Math, asked by bmadhura9, 6 hours ago

Q16) The total cost function C = x3 + 3x + 4, then the marginal cost when x = 10 units is
a) 303
b) 200
c) 340
d) 250
017) TL
intorart at 8% on Rs 100 for 5 years is Rs​

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Given Cost Function is

\rm :\longmapsto\:C =  {x}^{3} + 3x + 4

We know,

Marginal Cost is defined as Rate of change of Cost Function per unit.

Mathematically, Marginal Cost ( M.C. ) is represented as

\rm :\longmapsto\:\boxed{\tt{M.C.  \:  =  \:  \dfrac{d}{dx}C }}

\rm :\longmapsto\:C =  {x}^{3} + 3x + 4

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx} C =  \dfrac{d}{dx}\bigg[{x}^{3} + 3x + 4\bigg]

\rm :\longmapsto\:M.C.  =  \dfrac{d}{dx}{x}^{3} +\dfrac{d}{dx} 3x + \dfrac{d}{dx}4

We know,

\rm :\longmapsto\:\boxed{\tt{ \dfrac{d}{dx} {x}^{n} =  {nx}^{n - 1}}}

and

\rm :\longmapsto\:\boxed{\tt{ \dfrac{d}{dx} k =  0}}

\rm :\longmapsto\:M.C.  =  {3x}^{3 - 1}  + 3 \times 1 + 0

\rm :\longmapsto\:M.C.  =  {3x}^{2}  + 3

So, Marginal Cost when x = 10, we get

\rm :\longmapsto\:M.C._{{x = 10}} =  {3(10)}^{2}  + 3

\rm :\longmapsto\:M.C._{{x = 10}} =  300  + 3

\rm :\longmapsto\:M.C._{{x = 10}} =  303

  • So, Option (a) is correct.

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More to Know

Average Cost

 \purple{\rm :\longmapsto\:\boxed{\tt{  \:  \: Average \: Cost, \: AC =  \frac{Cost \: function \: }{x} \: }}}

Revenue Function

 \purple{\rm :\longmapsto\:\boxed{\tt{  \:  \: Revenue, \: R \:  =  \:p \: x \:  }}}

Average Revenue

 \purple{\rm :\longmapsto\:\boxed{\tt{  \:  \: Average \: Revenue, \: AC =  \frac{Revenue \: }{x} \: }}}

Marginal Revenue

 \blue{\rm :\longmapsto\:\boxed{\tt{M.R.  \:  =  \:  \dfrac{d}{dx}R }}}

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Similar questions