Math, asked by architectrashid259, 6 months ago

Q17. what is the area of quadrilateral
ABCD in which AB =3 cm, BC = 4 cm,
CD = 4 cm, DA = 5 cm and AC = 5 cm.​

Answers

Answered by BengaliBeauty
37

Answer:-

Area of the Quadrilateral = area of ꕔABC + area of ꕔADC

Area of ꕔABC [ using heron's formula ]

 =  \sqrt{s(s - a)(s - b)(s - c)}

{where s is the semi perimeter}

s =  \frac{a + b + c}{2}

 =  \frac{3 + 4 + 5}{2}

 =   { \dfrac{ \cancel{12} {}^{ \: \: \: \: 6} }{ \cancel{2}_{ \: \: \: \: 1}}}

 = 6

Area of ꕔ ABC =   \sqrt{s(s - a)(s - b)(s - c)}

=  \sqrt{6(6 - 3)(6- 4)(6 - 5)}

 =  \sqrt{6 \times 3 \times 2 \times 1}

 =  \sqrt{6 \times 6}

= 6 cm²

Area of ꕔADC

 =  \sqrt{s(s - a)(s - b)(s - c)}

{where s is the semi perimeter}

s =  \frac{a + b + c}{2}

  = \frac{5 +  4 + 5}{2}

 =   { \dfrac{ \cancel{14} {}^{ \: \: \: \: 7} }{ \cancel{2}_{ \: \: \: \: 1}}}

 = 7

Area of ꕔ ADC =   \sqrt{s(s - a)(s - b)(s - c)}

 =  \sqrt{7(7 - 5)(7 - 4)(7 - 5)}

 =  \sqrt{7 \times 2 \times 3 \times 2}

  = \sqrt{2 \times 2 \times 7 \times 3}

 =  2\sqrt{21}

 = 2 \times 4.58

= 9.16 cm²

Area of the Quadrilateral = area of ꕔABC + area of ꕔADC

Area of the Quadrilateral = 6 + 9.16

= 15.16 cm² (approx)

Answer : The area of the quadrilateral is 15.16 cm²

@BengaliBeauty

Feel free to ask your doubts anytime

Attachments:
Answered by mathdude500
1

hope it helps you......

Attachments:
Similar questions