Physics, asked by Sanjay5701, 1 month ago

Q18. An object is dropped from rest at a height of 100 m and simultaneously another object is dropped from
rest at a height 50 m. What is the difference in their heights after 2 s if both the objects drop with same
accelerations? How does the difference in heights vary with time?

Answers

Answered by SparklingBoy
437

\large \clubs \:  \bf Given  :  -

  • An object is dropped from rest from a height of 100 m .

  • Simultaneously another object is dropped from rest from a height of 50 m.

----------------------

\large \clubs \:  \bf  To  \: Find  :  -

  • Difference in their heights after 2 s.

  • How does the difference in heights vary with time ?

----------------------

\large \clubs \:  \bf  Solution :  -

Here Acceleration is the Acceleration due to gravity (g).

Acceleration = a = g = 10 m/s²

We Have 2nd Equation of Kinematics as :

  \red \bigstar  \: \boxed{\orange{ \boxed{ \bf{s =ut} +  \dfrac{1}{2}{at}^{2}}}}

For First Body :-

  • Time = t = 2 second

  • Initial Velocity = u = 0 m/s

  • Acceleration = a = 10 m/s²

Using 2nd Equation of Kinematics :

★ Distance covered by 1st body :

 \text s_1 = 0 +  \frac{1}{2}  \times 10 \times  {2}^{2}  \\

\purple{ \large :\longmapsto  \underline {\boxed{{\bf s_1 = 20 \: m} }}}

As Initial Height first body is 100 m

Hence,

Height of 1st body after 2s = 100 - 20

Height of 1st body after 2s = 80 m

Now,

For Second Body :-

  • Time = t = 2 second

  • Initial Velocity = u = 0 m/s

  • Acceleration = a = 10 m/s²

Using 2nd Equation of Kinematics :

★ Distance covered by 2nd body :

 \text s_2 = 0 +  \frac{1}{2}  \times 10 \times  {2}^{2}  \\

\purple{ \large :\longmapsto  \underline {\boxed{{\bf s_2 = 20 \: m} }}}

As Initial Height Second body is 50 m

Hence,

Height of 2nd body after 2s = 50 - 20

Height of 2nd body after 2s = 30 m

So,

Difference in their Heights after 2s = 80 - 30

\underline{\bf \pink{\underline{Difference \: in \: their \: Heights}}}\\ \underline{\bf \pink{\underline{after \: 2s = 50 m }}}

Also,

It concluded that initial difference between their Heights is equals to final difference between their Heights

So,

\underline{\bf \pink{\underline{Difference\: in\: their\: Heights}}}\\ \underline{\bf \pink{\underline{ does\: not\: vary\: with\: time}}}

----------------------

Answered by CutePrince7
144

Given that , An object is dropped from rest at a height of 100 m and simultaneously another object is dropped from rest at a height 50 m.

Need To Find : The Difference in there height after 2 sec & How does the difference in heights vary with time ?

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━━⠀

⠀⠀⠀▪︎ We know that , to calculate their Distance covered in 2 sec we can use Second Equation of Motion .

Second Equation of motion is Given by :

\qquad \qquad \star \:\:\underline {\boxed {\pmb{\sf  \: s \:=\:ut \:+\:\bigg\lgroup \dfrac{1}{2} \bigg\rgroup \:gt^2\:}}}\:\\\\

⠀Where ,

  • s is the Distance Travelled,
  • t is the Time Taken ,
  • u is the Initial Velocity &
  • g is the Acceleration due to Gravity .

\qquad \qquad \bigstar \:\:\underline {\pmb{\pink { \sf \: Height \:\:of \:First \: Body \:after \:2 \:sec\:\::\:}}}\\\\

\qquad \dashrightarrow \sf   \: s \:=\:ut \:+\:\bigg\lgroup \dfrac{1}{2} \bigg\rgroup \:gt^2 \:\\\\

\qquad \dashrightarrow \sf   \: s \:=\:\big( 0 \big) 2 \:+\:\bigg\lgroup \dfrac{1}{2} \bigg\rgroup \:g\:\times\:\big(2\big)^2 \:\\\\

\qquad \dashrightarrow \sf   \: s \:=\:\big( 0 \big) 2 \:+\:\bigg\lgroup \dfrac{1}{2} \bigg\rgroup \:\big(10\big)\:\times\:\big(2\big)^2 \:\:\qquad \because \: \bigg\lgroup \sf{ Acc^n \:_{\:(Gravity \:)}\:=\:10\:m/s^2 }\bigg\rgroup\\\\

\qquad \dashrightarrow \sf   \: s \:=\:\big( 0 \big) 2 \:+\:\bigg\lgroup \dfrac{1}{2} \bigg\rgroup \:\big(10\big)\:\times\:\big(2\big)^2 \\\\

\qquad \dashrightarrow \sf   \: s \:=\: \:10\:\times\:2 \\\\

\qquad \dashrightarrow  \underline {\boxed {\pmb{\frak{\purple { \: s\:\: \:=\: \:20 \:\:m\:}}}}}\:\:\bigstar \\\\

\qquad \dag\:\underline {\frak{ Height \:\:After \:2 \:sec\:\big( \:Initial \:Height \:=\:100\:m\:\big)\:\::}}\\\\

\qquad \dashrightarrow \sf   \: Height \:_{1}\:\:=\: \:Initial \:Height \: \:- \:\:Height \:after\:2 \: sec\:\\\\

\qquad \dashrightarrow \sf   \: Height \:_{1}\:\:=\: \:100\: \:- \:\:20\:\\\\

\qquad \dashrightarrow  \underline {\boxed {\pmb{\frak{\purple { \: Height _1\:\: \:=\: \:80 \:\:m\:}}}}}\:\:\bigstar \\\\

\qquad \qquad \bigstar \:\:\underline {\pmb{\pink { \sf \: Height \:\:of \:Second \: Body \:after \:2 \:sec\:\::\:}}}\\\\

\qquad \dashrightarrow \sf   \: s \:=\:ut \:+\:\bigg\lgroup \dfrac{1}{2} \bigg\rgroup \:gt^2 \:\\\\

\qquad \dashrightarrow \sf   \: s \:=\:\big( 0 \big) 2 \:+\:\bigg\lgroup \dfrac{1}{2} \bigg\rgroup \:g\:\times\:\big(2\big)^2 \:\\\\

\qquad \dashrightarrow \sf   \: s \:=\:\big( 0 \big) 2 \:+\:\bigg\lgroup \dfrac{1}{2} \bigg\rgroup \:\big(10\big)\:\times\:\big(2\big)^2 \:\:\qquad \because \: \bigg\lgroup \sf{ Acc^n \:_{\:(Gravity \:)}\:=\:10\:m/s^2 }\bigg\rgroup\\\\

\qquad \dashrightarrow \sf   \: s \:=\:\big( 0 \big) 2 \:+\:\bigg\lgroup \dfrac{1}{2} \bigg\rgroup \:\big(10\big)\:\times\:\big(2\big)^2 \\\\

\qquad \dashrightarrow \sf   \: s \:=\: \:10\:\times\:2 \\\\

\qquad \dashrightarrow  \underline {\boxed {\pmb{\frak{\purple { \: s\:\: \:=\: \:20 \:\:m\:}}}}}\:\:\bigstar \\\\

\qquad \dag\:\underline {\frak{ Height \:\:After \:2 \:sec\:\big( \:Initial \:Height \:=\:50\:m\:\big)\:\::}}\\\\

\qquad \dashrightarrow \sf   \: Height \:_{2}\:\:=\: \:Initial \:Height \: \:- \:\:Height \:after\:2 \: sec\:\\\\

\qquad \dashrightarrow \sf   \: Height \:_{2}\:\:=\: \:50\: \:- \:\:20\:\\\\

\qquad \dashrightarrow  \underline {\boxed {\pmb{\frak{\purple { \: Height _2\:\: \:=\: \:30 \:\:m\:}}}}}\:\:\bigstar \\\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━━⠀

\qquad \qquad \bigstar \:\:\underline {\pmb{\pink { \mathbb{ \:DIFFERENCE \:\:IN\:\:THEIR\:\: HEIGHT \:\: \:AFTER \:2 \:SEC\:\::\:}}}}\\\\

\\\qquad \dashrightarrow \sf Difference _{(\:Height \:)}\:=\: Height _1 \:-\:Height _2\:\\\\

\qquad \dashrightarrow \sf Difference _{(\:Height \:)}\:=\: 80 \:-\:30\:\\\\

\qquad \dashrightarrow  \underline {\boxed {\pmb{\frak{\purple { \: Difference _{(\:Height \:)}\:\:\: \:=\: \:50 \:\:m\:}}}}}\:\:\bigstar \\\\

⠀⠀⠀⠀ Hence, Difference in their Height after 2 sec will be 50 m .

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━━⠀

⠀⠀⠀⌬⠀Is the difference in heights vary with time ?

▪︎ As we , Can see that Here , Initial Difference between Height is 50 m [ i.e. 100 - 50 ] & Difference in Height after 2 sec is 50 m [ i.e. 80 - 30 = 50 ] , Here Initial Difference between Height and Height after 2 sec is Equal .

Therefore,

  • Difference in their Height doesn't vary with time .
Similar questions