Math, asked by Rakeshonly, 20 days ago

Q19. If (tan⁻¹(x))² + (cot⁻¹(x))² = 5π²/8, then find x.​

Answers

Answered by ItsMagician
297

Topic :-

Inverse Trigonometric Function

Given :-

\sf{(\tan^{-1}x)^2+(\cot^{-1}x)^2=\dfrac{5\pi^2}{8}}

To Find :-

Value of 'x'.

Solution :-

\sf{(\tan^{-1}x)^2+(\cot^{-1}x)^2=\dfrac{5\pi^2}{8}}

\sf{(\tan^{-1}x)^2+\left(\dfrac{\pi}{2}-\tan^{-1}x\right)^2=\dfrac{5\pi^2}{8}}

\sf{\left(\because \tan^{-1}x+\cot^{-1}x=\dfrac{\pi}{2},when\:x\in R\right)}

\sf{Put\:\tan^{-1}x=p,}

\sf{p^2+\left(\dfrac{\pi}{2}-p\right)^2=\dfrac{5\pi^2}{8}}

\sf{p^2+\left(\dfrac{\pi}{2}\right)^2-2\cdot\left( \dfrac{\pi}{2}\right)\cdot p+p^2=\dfrac{5\pi^2}{8}}

\sf{(\because (a-b)^2=a^2-2ab+b^2)}

\sf{p^2+p^2-\not{2}\cdot\left( \dfrac{\pi}{\not{2}}\right)\cdot p+\left(\dfrac{\pi}{2}\right)^2-\dfrac{5\pi^2}{8}=0}

\sf{2p^2- p\pi+\dfrac{\pi^2}{4}-\dfrac{5\pi^2}{8}=0}

\sf{\dfrac{8(2p^2)- 8p\pi+2\pi^2-5\pi^2}{8}=0}

\sf{\dfrac{16p^2- 8p\pi-3\pi^2}{8}=0}

\sf{16p^2- 8p\pi-3\pi^2=0}

Applying Quadratic Formula,

\sf{p=\dfrac{-(-8\pi)\pm \sqrt{(-8\pi)^2-4(16)(-3\pi^2)}}{32}}

\sf{p=\dfrac{8\pi\pm \sqrt{64\pi^2+192\pi^2}}{32}}

\sf{p=\dfrac{8\pi\pm \sqrt{256\pi^2}}{32}}

\sf{p=\dfrac{8\pi\pm 16\pi}{32}}

\sf{p=\dfrac{8\pi+16\pi}{32}\:\:or\:\:\dfrac{8\pi-16\pi}{32}}

\sf{p=\dfrac{24\pi}{32}\:\:or\:\:\dfrac{-8\pi}{32}}

\sf{ p = \dfrac{ 3\pi}{4} \: \: or \: \: \dfrac{ - \pi}{4}}

Put back value of p,

\sf{\tan^{-1}x=\dfrac{3\pi}{4}\:\:or\:\:\dfrac{-\pi}{4}}

\sf{x=\tan \left(\dfrac{3\pi}{4}\right)\:\:or\:\:\tan\left(\dfrac{-\pi}{4}\right)}

\sf{x=-1}

\sf{\left(\because\tan\left( \dfrac{3\pi}{4}\right)=\tan\left( \dfrac{-\pi}{4}\right)=-1\right)}

Answer :-

\sf{Value\:of\:\:\bold{x=-1}}

Answered by AkashMandal909
1

Step-by-step explanation:

sum of two digit number is 9.when we interchans the digits, it is found that tsum of two digit number is 9.when we interchans the digits, it is found that the result new number is greater then the original number by 27. what is two digit numberhe result new number is greater then the original nsum of two digit number is 9.when we interchans the digits, it is found that the result new number is greater then the original number by 27. what is two digit numberumber by 27. what is two digit number

Similar questions