Math, asked by llitzteribabull, 4 days ago

Q1Find the nth derivative of ex log

Answers

Answered by PRINCE100001
5

Step-by-step explanation:

SOLUTION

TO DETERMINE

The n th derivative of

\sf {e}^{x} \log x

EVALUATION

Here the given function is

\sf f(x) = {e}^{x} \log x

\sf \: Let \: \: \: u = {e}^{x} \: \: and \: \: v = \log x

Then f(x) = uv

Now

\sf \:u_n = {e}^{x} \: \: for \: all \: n

Again

\displaystyle \sf \: v_n = \frac{ {( - 1)}^{n - 1} \: (n - 1)!}{ {x}^{n} }

Now f(x) = uv

Differentiating both sides n times with respect to x using Leibnitz theorem we get

</p><p>\displaystyle \sf \: {f}^{n}(x) = (uv) _n = \displaystyle \sf\sum\limits_{r = 0}^{n} \: {}^{n} C_ru_{n - r}v_r

\displaystyle \sf \implies {f}^{n}(x) = \displaystyle \sf\sum\limits_{r = 0}^{n} \: {}^{n} C_ru_{n - r}v_r

\displaystyle \sf \implies {f}^{n}(x) = {e}^{x} \log x + \displaystyle \sf\sum\limits_{r=1}^{n} \: {}^{n} C_r \: {e}^{x} \: \frac{ {( - 1)}^{r - 1} \: (r - 1)!}{ {x}^{r} }

\displaystyle \sf \implies {f}^{n}(x) = {e}^{x} \log x + {e}^{x} \: \displaystyle \sf\sum\limits_{i=1}^{n} \: {}^{n} C_r \: \frac{ {( - 1)}^{r - 1} \: (r - 1)!}{ {x}^{r} }

</p><p>\displaystyle \sf \implies {f}^{n}(x) = {e}^{x} \bigg \{ \log x + n {x}^{ - 1} - {}^{n} C_2 {x}^{ - 2} + .. \: .. \bigg \}

━━━━━━━━━━━━━━━━

Similar questions