Math, asked by rahulsen6899, 9 months ago

Q2) IF F= (x+y+1)i+j-(x+y)k then show that F.curl F=0

Answers

Answered by pulakmath007
14

SOLUTION

GIVEN

  \vec{F} = (x + y + 1) \hat{i} +  \hat{j}  - (x + y) \hat{k}

TO PROVE

 \vec{F}.(\nabla \times   \vec{F})

EVALUATION

Here the given vector is

  \vec{F} = (x + y + 1) \hat{i} +  \hat{j}  - (x + y) \hat{k}

Now

\nabla \times   \vec{F}

=  \displaystyle\begin{vmatrix} \hat{i} & \hat{j} & \hat{k}\\ \\ \frac{ \partial}{ \partial x} & \frac{ \partial}{ \partial y} & \frac{ \partial}{ \partial z} \\ \\ x + y + 1 & 1 &  - x - y \end{vmatrix}

=   \hat{i}( - 1) -  \hat{j} ( - 1) +  \hat{k}(0 - 1)

=    - \hat{i} +  \hat{j}  -  \hat{k}

Now

 \vec{F}.(\nabla \times   \vec{F})

=  \big[(x + y + 1) \hat{i} +  \hat{j}  - (x + y) \hat{k} \big]. ( - \hat{i} +  \hat{j}  -  \hat{k})

=  - x - y - 1 + 1 + x + y

 = 0

Hence proved

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. write the expression for gradient and divergence

https://brainly.in/question/32412615

2. prove that the curl of the gradient of

(scalar function) is zero

https://brainly.in/question/19412715

Similar questions