Q2.If the sum of the zeroes of the polynomial p(x) = kx' +2x+3k is equal to their product, then
find two value of 'k'.
Answers
Step-by-step explanation:
quadraticequation:−kx
2
+2x+3k=0
↦sumofroots=(α+β)
↦productofroots:−(αβ)
\begin{gathered}\large\underline\bold{ \mathcal{ \pink{To\:Find:}}} \\ \end{gathered}
ToFind:
\rm{ \red{ \star}} \: the\:value\:of\:K .⋆thevalueofK.
\begin{gathered}\large\underline\bold{ \underline{ \mathfrak{ \purple{Solving:}}}}\\ \\\end{gathered}
Solving:
\begin{gathered}\leadsto a= k \\ \leadsto b= 2 \\ \leadsto c= 3 \\ \\ \rm{ \green{\circ }} \: \red{ sum \:of\:zeroes= \dfrac{-b}{a}} \\ \\ :\implies \underline{\underline{(\alpha + \beta )= \pink{ \dfrac{-2}{k}}} } \\ \\ \therefore Now \:for\: product \\ \\ \rm{\green{\circ}} \:\red{ product \:of\:zeroes= \dfrac{c}{a}} \\ \\ :\implies \dfrac{ 3\:\cancel{k\:}}{ \cancel{k\:}} \\ \\ :\implies \underline{ \underline{ ( \alpha \beta ) = \pink{3 }}} \\ \\ \green{ as\:given\:sum\:of\:zeroes \:= \:. product\:of\:zeroes.} \\ \\ \rightarrow (\alpha \beta) = (\alpha +\beta) \\ \\ :\implies 3= \dfrac{-2}{k} \\ \\ :\implies 3k= -2 \\ \\ :\implies k= \dfrac{-2}{3} \\ \\ \rm{ \pink{\overbrace{ \overline{ \red{ \underbrace{\underline{ \blue{ \mid\:\:\:\:\:\:\:\:\:\:\:k=\dfrac{-2}{3} \:\:\:\:\:\:\:\:\:\:\: \mid}}}}}}}} \end{gathered}
⇝a=k