Q2.If the sum of the zeroes of the polynomial p(x) = kx' +2x+3k is equal to their product, then
find two value of 'k'. .
Answers
Answer:
\begin{gathered}\large \orange{\underline{ \orange{\underline{\bold{\purple{\overbrace{\pink{ \underbrace{ |\:\:\:\: \rm{ \mathfrak{ \red{ \huge{answer}}} \:\:\:\:|} }}}}}}}}} \\ \\ \end{gathered}
∣answer∣
\begin{gathered} \rm{ \bold{ \green{\underline{ \pink{ \underline{ \red{ \underbrace{ \overbrace{\blue{\mid \:\:\:\:\:\: k= \dfrac{-2}{3}\:\:\:\:\:\: \mid}}}}}}}}}} \\ \\ \\ \end{gathered}
∣k=
3
−2
∣
\begin{gathered}\rm{ \green{ \underline{ \red{ \overbrace{ \pink{ \mathfrak{ \:\:\:explanation\:in\:details \:\: \downarrow}}}}}}} \\ \\ \end{gathered}
explanationindetails↓
\begin{gathered}\large\underline\bold{ \mathcal{ \pink{GIVEN:}}} \\ \end{gathered}
GIVEN:
\begin{gathered}\mapsto quadratic\:equation:- \blue{ kx^2+2x+3k=0 } \\ \\ \mapsto sum \:of\:roots= \orange{(\alpha +\beta ) } \\ \\ \mapsto product\:of\:roots :- \green{(\alpha \beta )} \end{gathered}
↦quadraticequation:−kx
2
+2x+3k=0
↦sumofroots=(α+β)
↦productofroots:−(αβ)
\begin{gathered}\large\underline\bold{ \mathcal{ \pink{To\:Find:}}} \\ \end{gathered}
ToFind:
\rm{ \red{ \star}} \: the\:value\:of\:K .⋆thevalueofK.
\begin{gathered}\large\underline\bold{ \underline{ \mathfrak{ \purple{Solving:}}}}\\ \\\end{gathered}
Solving:
\begin{gathered}\leadsto a= k \\ \leadsto b= 2 \\ \leadsto c= 3 \\ \\ \rm{ \green{\circ }} \: \red{ sum \:of\:zeroes= \dfrac{-b}{a}} \\ \\ :\implies \underline{\underline{(\alpha + \beta )= \pink{ \dfrac{-2}{k}}} } \\ \\ \therefore Now \:for\: product \\ \\ \rm{\green{\circ}} \:\red{ product \:of\:zeroes= \dfrac{c}{a}} \\ \\ :\implies \dfrac{ 3\:\cancel{k\:}}{ \cancel{k\:}} \\ \\ :\implies \underline{ \underline{ ( \alpha \beta ) = \pink{3 }}} \\ \\ \green{ as\:given\:sum\:of\:zeroes \:= \:.