Math, asked by mishralopamudra126, 8 months ago

(q²-p²)(q²+p²)-(q²-p²)²​

Answers

Answered by michaelgimmy
3

QUESTION :-

Factorize : (q^2 - p^2)(q^2 + p^2) - (q^2 - p^2)^2

SOLUTION :-

[(q^2 - p^2)(q^2 + p^2)] - (q^2 - p^2)^2

Using the Identity, (a + b)(a - b) = a^2 - b^2,

\Rightarrow [(q^2 - p^2)(q^2 + p^2)] - (q^2 - p^2)^2 = (q^2)^2 - (p^2)^2 - (q^2 - p^2)^2\\\\\Rightarrow \bold {q^4 - p^4 - [(q^2 - p^2)^2]}\\\\

Using the Identity, (a - b)^2 = a^2 - 2ab + b^2,

\Rightarrow  q^4 - p^4 - [(q^2 - p^2)^2] = q^4 - p^4 - [(q^2)^2 - 2(q^2)(p^2) + (p^2)^2\\\\\Rightarrow q^4 - p^4 - [q^4 - 2q^2p^2 + p^4]\\\\\Rightarrow  q^4 - p^4 - q^4 + 2q^2p^2 - p^4\\\\\Rightarrow - p^4 + 2q^2p^2 - p^4} = \bold {-2p^4 + 2q^2p^2}\\\\\Rightarrow \bold {- [2p^4 - 2q^2p^2]} = \bold {-[2p^2 (p^2 - q^2)]}

Using the Identity, a^2 - b^2 = (a + b)(a - b),

\bold {-[2p^2 (p^2 - q^2)]} = \bold {-[2p^2 (p + q)(p - q)]}

CONCLUSION :-

The Factorized Form of (q^2 - p^2)(q^2 + p^2) - (q^2 - p^2)^2 is \bold {-[2p^2 (p + q)(p - q)]}

Similar questions