Math, asked by harshkumar1907, 10 months ago

Q2
Prove that cos A + cos (120 - A) + cos (120 + A) = 0​

Answers

Answered by FehlingSolution
2

LHS = Cos(A) + cos(120-A) + cos(120+A)

=> cos(A) + cos(120)cos(A) + sin(120)sin(A) + cos(120)cos(A) - sin(120)sin(A)

=> cos(A) + 2cos(120)cos(A)

=> cos(A) + 2(-1/2)cos(A)

=> cos(A) - cos(A)

=> 0 = RHS

Predefined results used above :

  • Cos(A+B) = cos(A)cos(B) - sin(A)sin(B)
  • cos(A-B) = cos(A)cos(B) + sin(A)sin(B)
  • cos(120) = -1/2

#FollowMe

Similar questions