Q2
Prove that cos A + cos (120 - A) + cos (120 + A) = 0
Answers
Answered by
2
LHS = Cos(A) + cos(120-A) + cos(120+A)
=> cos(A) + cos(120)cos(A) + sin(120)sin(A) + cos(120)cos(A) - sin(120)sin(A)
=> cos(A) + 2cos(120)cos(A)
=> cos(A) + 2(-1/2)cos(A)
=> cos(A) - cos(A)
=> 0 = RHS
Predefined results used above :
- Cos(A+B) = cos(A)cos(B) - sin(A)sin(B)
- cos(A-B) = cos(A)cos(B) + sin(A)sin(B)
- cos(120) = -1/2
#FollowMe
Similar questions