Q2. Show that -1, 3 and 6 are zeroes of the polynomial p(x) = x 3 – 8x2 + 9x + 18. Also verify the relationship between the zeroes and the coefficients of p(x).
Answers
Given :
- Zeros of polynomial area -1, 3 and 6
- p(x) = x³ - 8x² + 9x + 18
According to the question,
➞ p(x) = x³ - 8x² + 9x + 18
➞ p(-1) = (-1)³ - 8(-1)² + 9(-1) + 18
➞ p(-1) = -1 - 8 - 9 + 18
➞ p(-1) = -9 - 9 + 18
➞ p(-1) = -18 + 18
➞ p(-1) = 0
➞ p(x) = x³ - 8x² + 9x + 18
➞ p(3) = (3)³ - 8(3)² + 9(3) + 18
➞ p(3) = 27 - 8(9) + 27 + 18
➞ p(3) = 27 - 72 + 45
➞ p(3) = -45 + 45
➞ p(3) = 0
➞ p(x) = x³ - 8x² + 9x + 18
➞ p(6) = (6)³ - 8(6)² + 9(6) + 18
➞ p(6) = 216 - 8(36) + 54 + 18
➞ p(6) = 216 - 288 + 72
➞ p(6) = -72 + 72
➞ p(6) = 0
★ Verifying the relationship between the zeros and the coefficients of p(x) :-
- α + β + γ = -b/a
➝ (-1) + 3 + 6 = -(-8)/1
➝ - 1 + 9 = 8
➝ 8 = 8
- αβ + βγ + γα = c/a
➝ (-1) × 3 + 3 × 6 + 6 × (-1) = 9/1
➝ -3 + 18 - 6 = 9
➝ 15 - 6 = 9
➝ 9 = 9
- αβγ = -d/a
➝ (-1) × 3 × 6 = -18/1
➝ -18 = -18
.°. Hence,verified.
Solution :-
Putting x = -1
-1 - 8 + (-9) + 18 = 0
-9 + -9 + 18 = 0
-18 + 18 = 0
0 = 0
Putting x = 3
(3)³ - 8(3)² + 9(3) + 18 = 0
27 - 8(9) + 27 + 18 = 0
72 - 72 = 0
0 = 0
Putting x = 6
(6)³ - 8(6)² + 9(6) + 18 = 0
216 - 8(36) + 54 + 18 = 0
288 - 288 = 0
0 = 0
· V E R I F I C A T I O N :
-1 + 3 + 6 = -(-8)/1
-1 + 9 = 8/1
8 = 8
-1 × 3 + 3 × 6 + 6 × -1 = 9/1
-3 + 3 × 6 + -6 = 9
-9 + 18 = 9
9 = 9
-1 × 3 × 6 = -18/1
-1 × 18 = -18
-18 = -18