Math, asked by dimplejain2008, 4 months ago

Q2. The ages of A & B are in the ratio
2:5. After 6 years their ages will be in
the ratio 1:2. Find the present age of
B. (2)
O A. 30 yrs
O B. 33 yrs
O C. 35 yrs​

Answers

Answered by Ladylaurel
9

Answer :-

30 years [ option A. ] is correct.

Step-by-step explanation:-

To Find :-

  • The present age of B .....(?)

Solution :-

Let the A be 2x and B be 6x.

Given that,

 \purple \longrightarrow \tt{ \dfrac{2x + 6}{5x + 6} =  \dfrac{1}{2}}

Now, Simplification :

 \purple \longrightarrow \tt{ \dfrac{2x + 6}{5x + 6} =  \dfrac{1}{2}}

Simplifying the values with cross multipcation

 \purple \longrightarrow \tt{2(2x + 6) = 1(5x + 6)}

 \purple \longrightarrow \tt{4x + 12 = 5x + 6}

 \purple \longrightarrow \tt{4x  - 5x = 6 - 12}

 \purple \longrightarrow \tt{ - x =  - 6}

 \purple \longrightarrow \tt{x = 6}

Therefore, value of x is 6

Now, Let's find their ages :

 \tt{Given, \: A's \:  \: age = 2x}

 \purple \longrightarrow \tt{2 \times 6}

\purple \longrightarrow \tt{12 \:  \: years}

  \tt{Given, \:  \: B's \:  \: age = 5x}

 \purple \longrightarrow \tt{5 \times 6}

 \longrightarrow \sf{30 \:  \: years} \: \: \orange{ \star}

 \boxed{ \underline{ \sf{B's\: \: age \: \: is \: \: 30 \: \: years}}}

Similar questions