Math, asked by honeysharma01807, 1 year ago

Q2.
The points (7, 2) and (-1,0) lie on a line
(a) 7y= 3x - 7
(c) y=7+7
(b) 4y=*+1
(d) == 4y+1




answer fast​

Answers

Answered by sissy2956
2

Step-by-step explanation:

option B

4y= x+14y=x+1

Explanation:

In this question, we have to check which pair of satisfied equation of line

First taking line \mathbf{7y=3x-7}7y=3x−7 and point A

\mathbf{7y=3x-7}7y=3x−7

Consider L.H.S of above equation

\mathbf{L.H.S=7y=7\times 2=14}L.H.S=7y=7×2=14

\mathbf{R.H.S=3x-7=3\times 7-7=21-7=14}R.H.S=3x−7=3×7−7=21−7=14

From here it is clear that \mathbf{L.H.S=R.H.S}L.H.S=R.H.S means point A

lie on this line.

Now check for point B

\mathbf{L.H.S=7y=7\times 0=0}L.H.S=7y=7×0=0

\mathbf{R.H.S=3x-7=3\times (-1)-7=-3-7=-10}R.H.S=3x−7=3×(−1)−7=−3−7=−10

From here it is clear that \mathbf{L.H.S\neq R.H.S}L.H.S≠R.H.S ,so point B is

not lie on this line.

Now taking line \mathbf{4y=x+1}4y=x+1 and point A

\mathbf{4y=x+1}4y=x+1

Consider L.H.S of above equation

\mathbf{L.H.S=4y=4\times 2=8}L.H.S=4y=4×2=8

\mathbf{R.H.S=x+1=7+1=8}R.H.S=x+1=7+1=8

From here it is clear that \mathbf{L.H.S=R.H.S}L.H.S=R.H.S means point A

lie on this line.

Now check for point B

\mathbf{L.H.S=4y=4\times 0=0}L.H.S=4y=4×0=0

\mathbf{R.H.S=x+1=-1+1=0}R.H.S=x+1=−1+1=0

From here it is clear that \mathbf{L.H.S=R.H.S}L.H.S=R.H.S means point B

is also lie on this line.

Similar questions