Q2.
The points (7, 2) and (-1,0) lie on a line
(a) 7y= 3x - 7
(c) y=7+7
(b) 4y=*+1
(d) == 4y+1
answer fast
Answers
Step-by-step explanation:
option B
4y= x+14y=x+1
Explanation:
In this question, we have to check which pair of satisfied equation of line
First taking line \mathbf{7y=3x-7}7y=3x−7 and point A
\mathbf{7y=3x-7}7y=3x−7
Consider L.H.S of above equation
\mathbf{L.H.S=7y=7\times 2=14}L.H.S=7y=7×2=14
\mathbf{R.H.S=3x-7=3\times 7-7=21-7=14}R.H.S=3x−7=3×7−7=21−7=14
From here it is clear that \mathbf{L.H.S=R.H.S}L.H.S=R.H.S means point A
lie on this line.
Now check for point B
\mathbf{L.H.S=7y=7\times 0=0}L.H.S=7y=7×0=0
\mathbf{R.H.S=3x-7=3\times (-1)-7=-3-7=-10}R.H.S=3x−7=3×(−1)−7=−3−7=−10
From here it is clear that \mathbf{L.H.S\neq R.H.S}L.H.S≠R.H.S ,so point B is
not lie on this line.
Now taking line \mathbf{4y=x+1}4y=x+1 and point A
\mathbf{4y=x+1}4y=x+1
Consider L.H.S of above equation
\mathbf{L.H.S=4y=4\times 2=8}L.H.S=4y=4×2=8
\mathbf{R.H.S=x+1=7+1=8}R.H.S=x+1=7+1=8
From here it is clear that \mathbf{L.H.S=R.H.S}L.H.S=R.H.S means point A
lie on this line.
Now check for point B
\mathbf{L.H.S=4y=4\times 0=0}L.H.S=4y=4×0=0
\mathbf{R.H.S=x+1=-1+1=0}R.H.S=x+1=−1+1=0
From here it is clear that \mathbf{L.H.S=R.H.S}L.H.S=R.H.S means point B
is also lie on this line.