Q2.The sum of four numbers is G.P.is 60 and the A.M.between first and the last is 18 .Find the numbers.
Answers
Answer:
32, 16, 8, 4 or 4, 8, 16, 32
Step-by-step explanation:
Let the 1st, 2nd, 3rd, 4th number be a, ar , ar² and ar³ respectively.
AM b/w a and ar³ = 18
=> (a + ar³)/2 =18
=> a + ar³ = 36 ... (1)
=> a(1 + r³) = 36 ...(2)
Sum of all numbers = 60
=> a + ar + ar² + ar³ = 60
=> a + ar³ + ar + ar² = 60
=> 36 + ar + ar² = 60 {from (1)}
=> a(r + r²) = 24 ... (3)
After dividing (2) by (3):
=> (1 + r³)/(r + r²) = 3/2
=> 2 +2r³ = 3r + 3r²
=> 2r² - 3r² - 3r + 2 = 0
=> (r + 1)(2r - 1)(r - 2) = 0
=> r = - 1, r = 1/2 , r = 2
Based on these values, put r in (1),
a = 36/0 (not defined, so neglect r = -1)
a = 32, r = 1/2
a = 4 , r = 2
Terms are,
32, 16, 8, 4 or 4, 8, 16, 32
Answer:
Step-by-step explanation:
Let the four terms of GP be a , ar , ar² , ar³.
According to the first statement,
The sum of four numbers in GP is 60.
→ a + ar + ar² + ar³ = 60 ____eqn.(1)
According to the second statement,
The A.M.between first and the last is 18.
→ a + ar³/2 = 18
→ a + ar³ = 36 ________eqn.(2)
Substitute the value of eqn.(2) in eqn.1
→ a + ar³ + ar+ ar² + = 60
→ 36 + ar + ar² = 60
→ ar + ar² = 24 ________eqn.(3)
Divide eqn.(2) & (3)
Put r = 1/2 in eqn. (2)
Put r = 2 in eqn.(2)