Math, asked by Arneetkaurhayer, 12 hours ago

. Q20) The area of a trapezium shaped field is 480 m². The distance between two parallel sides is 15m and one of the parallel side is 20m. Find the other parallel side. ਸਮਲੰਬ ਦੇ ਆਕਾਰ ਦਾ ਇੱਕ ਖੇਤ ਦਾ ਖੇਤਰਫਲ 480ਮੀ ਹੈ। ਦੋ ਸਮਾਂਤਰ ਭੁਜਾਵਾਂ ਦੇ ਵਿਚਕਾਰਲੀ ਦੂਰੀ 15 ਮੀ ਹੈ ਅਤੇ ਉਸ ਵਿੱਚ ਇੱਕ ਸਮਾਂਤਰ ਭੁਜਾ ਦੀ ਲੰਬਾਈ(20ਮੀ ਹੈ। ਦੂਸਰੀ ਸਮਾਂਤਰ ਭੁਜਾ ਦੀ ਲੰਬਾਈ ਪਤਾ ਕਰੋ । 1) 11ਮੀ (m) 235 ਮੀ (m) 3)44 ਮੀ (m) 4)22 ਮੀ (m) iunt onnommodated in a cubical box of 2 m​

Answers

Answered by IntrovertLeo
25

Correct Question:

The area of a trapezium-shaped field is 480 m². The distance between two parallel sides is 15 m and one of the parallel sides is 20 m. Find the other parallel side.

Answer:

The other parallel side of a trapezium-shaped field is 44 m.

Given:

A trapezium with -

  • Area = 480 m²
  • Distance [Height] = 15 m
  • One parallel side = 20 m

What To Find:

We have to find -

  • The other parallel side.

Solution:

Let

  • Height be 'h'.
  • One parallel side be 'a'.
  • Another parallel side be 'b'.

Using the formula,

\implies \sf Area_{[Trapezium]} = \dfrac{1}{2}\:h\: (a+b)

Substitute the values,

\implies \sf 480 = \dfrac{1}{2} \times 15 \times (20+b)

Solving the equation,

\sf \implies \dfrac{480 \times 2}{15} = 20 + b

\sf \implies 32 \times 2  = 20 + b

\sf \implies 64  = 20 + b

\sf \implies 64 - 20  = b

\sf \implies 44 = b

Verification:

→ For verification, we will substitute the value of 'b' and check whether it is correct or not.

\implies \sf 480 = \dfrac{1}{2} \times 15 \times (20+44)

\implies \sf 480 = \dfrac{1}{2} \times 15 \times 64

\implies \sf 480 = 15 \times 32

\implies \sf 480 = 480

∵ Since, LHS = RHS.

∴ Hence, verified.

Answered by ANTMAN22
6

Appropriate question:

The area of a trapezium shaped field is 480 m². The distance between two parallel sides is 15m and one of the parallel side is 20m. Find the other parallel side?

To find:

Find the other parallel side

Given:

  • The area of a trapezium shaped field is 480 m²
  • The distance between two parallel sides is 15m
  • and one of the parallel side is 20m

Solution:

Let,The other parallel side be x meter

\frac{1}{2} (20 + x)15=480\\\\ \to or,\frac{300 + 15x}{2} =480\\\\ \to or,300+ 15x=480 * 2\\\\  \to or,15x=960-300\\\\ \to or,15x=660\\ \to or,x=44

Used formula:

\toThe area of the triangle=\frac{1}{2}(sum of the parallel side)*height

Answer:

The other parallel side=44m

Similar questions