Math, asked by sharpalsinghkamboj, 4 months ago


Q21. Differentiate sinx÷x
from first principles.

Answers

Answered by aryan073
5

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Question :

[tex]\large\red\bigstar\sf{ Differentiate \: \dfrac{sinx}{x} \: from \: first \: principle }[/tex]

Formula for Differentiation :

  \\ \large \star \sf \:  \frac{d}{dx} sinx = cosx

 \\  \star \large \sf \:  \frac{d}{dx} x = 1

 \\  \star \large \sf \:  \frac{d}{dx}  \frac{sinx}{x}  =  \frac{x \frac{d}{dx}sinx -  \frac{d}{dx}xsinx }{ {x}^{2} }  =  \frac{xcosx - sinx}{ {x}^{2} } ....(by \: chain \: rule)

Formulas for Differentiation from first Principle :

\large\red\bigstar\boxed{\sf{ \dfrac{dy}{dx} = lim_{h \to 0} \dfrac{f(x+h)-f(x)}{h}}}

Formulas of trigonometry:

  \\ \large \red \bigstar \sf \:  sin(x + y) = 2sin \frac{(x + y)}{2} cos \frac{(x - y)}{2}

  \\ \red \bigstar \large \sf \: sin( x - y) = 2cos \frac{(x - y)}{2} sin \frac{(x + y)}{2}

 \\  \red \bigstar \large \sf \: cos(x + y) = 2cos \frac{(x + y)}{2} cos \frac{(x - y)}{2}

 \\  \red \bigstar \large \sf \: cos(x - y) =  - 2sin \frac{(x + y)}{2} sin \frac{(x - y)}{2}

Solution :

➡ To find the derivative of sinx, we use first principle of differentiation. consider the function y=f(x)

\\ \implies\large\sf{ \dfrac{dy}{dx} = lim_{ h \to 0} \: \dfrac{f(x+h)-f(x)}{h}}

Substituting y=sinx we get,

\\ \implies\large\sf{ \dfrac{dy}{dx} = lim_{ h \to 0} \: \dfrac{sin(x+h)-sinx}{h}}

Applying the sine difference formula , we have

\\ \implies\large\sf{ \dfrac{dy}{dx} =lim_{h \to 0}  \: \dfrac{sin(x+h)-sinx}{h}}

\\ \implies\large\sf{ \dfrac{dy}{dx} = lim_{ h \to 0 } \: \dfrac{2cos(x+\dfrac{h}{2}) sin\dfrac{h}{2}}{h}}

We can put \sf{\dfrac{h}{2}} .Then u =0 and h=0 so the limits becomes

\\ \implies\large\sf{ \dfrac{dy}{dx} = lim_{h \to 0 } \: \dfrac{2cos(x+u)sinu}{2u}}

\\ \implies\large\sf{ \dfrac{dy}{dx}  = \bigg(lim_{h \to 0} \: cos(x+u) \bigg) \times \bigg(lim_{h \to 0} \: \dfrac{sinu}{u} \bigg) }

\\ \implies\large\sf{ \dfrac{dy}{dx} =cosx \times 1 }

\\ \implies\large\sf{ \dfrac{dy}{dx} =cosx}

We can conclude that

  \\ \implies \large \sf \:  \frac{d}{dx} sinx = cosx

The differentiation of sinx from first principle is cosx.

Similar questions