Math, asked by karnatakpradeep, 3 months ago

Q21. If a3 + b3 = 125 and a - b = 5 then a² + ab + b² is:​

Answers

Answered by CloseEncounter
36

Question

If a³ -b³= 125 and a - b = 5 then a² + ab + b² is:

Given

  • a³ - ³= 125
  • a-b=5

To find

  • a²+b²+ab

{\boxed{ \gray{ \sf{Formula \:  used =  {a}^{3}  -  {b}^{3}  = (a - b)( {a}^{2}  +  {b}^{2}  + ab)}}}}

step by the Explanation

\tt{\dashrightarrow a³-b³=(a-b)(a²+b²+ab)}

\tt{\dashrightarrow 125= 5(a²+b²+ab)}

\tt{\dashrightarrow a²+b²+ab= \frac{125}{5}}

\tt{\dashrightarrow a²+b²+ab=\bf{\blue{ 25}}}

\\ \\ \sf{ for\ more\ information}

\sf{(a + b) ^{3}  =  {a}^{3}  + b^{3}  + 3ab(a + b)}

\sf{(a  -  b) ^{3}  =  {a}^{3}   -  b^{3}   -  3ab(a  -  b)}

\sf{a ^{3}  +  {b}^{3}  = (a + b)(a ^{2}  +  {b}^{2}  - ab)}

\sf{a ^{3}   - {b}^{3}  = (a  -  b)(a ^{2}  +  {b}^{2}   +  ab)}

Answered by Anonymous
0

 \sf \pmb{Answer :}

Question

If a³ -b³= 125 and a - b = 5 then a² + ab + b² is:

Given

a³ - ³= 125

a-b=5

To find

a²+b²+ab

{\boxed{ \gray{ \sf{Formula \:  used =  {a}^{3}  -  {b}^{3}  = (a - b)( {a}^{2}  +  {b}^{2}  + ab)}}}}

step by the Explanation

\tt{\dashrightarrow a³-b³=(a-b)(a²+b²+ab)}

\tt{\dashrightarrow 125= 5(a²+b²+ab)}

\tt{\dashrightarrow a²+b²+ab= \frac{125}{5}}

\tt{\dashrightarrow a²+b²+ab=\bf{\blue{ 25}}}

\\ \\ \sf{ for\ more\ information}

\sf{(a + b) ^{3}  =  {a}^{3}  + b^{3}  + 3ab(a + b)}

\sf{(a  -  b) ^{3}  =  {a}^{3}   -  b^{3}   -  3ab(a  -  b)}

\sf{a ^{3}  +  {b}^{3}  = (a + b)(a ^{2}  +  {b}^{2}  - ab)}

\sf{a ^{3}   - {b}^{3}  = (a  -  b)(a ^{2}  +  {b}^{2}   +  ab)}

Similar questions