Math, asked by ghanishthasharma7, 2 months ago

Q22.If a + b + c = 6, a^2 + b^2 + c^2 = 14 and a^3 + b^3 + c^3 = 36, find the value of abc.

Answers

Answered by sandy1816
2

\huge\mathcal\colorbox{lavender}{{\color{b}{ꪗour Answer★࿐}}}

we \: know \:  \\ ( {a + b + c})^{2}  =  {a}^{2}  +  {b}^{2}  +  {c}^{2} + 2(ab + bc + ca) \\ (6) ^{2}  =  14 + 2(ab + bc + ca) \\ 36 - 14 = 2(ab + bc + ca) \\ ab + bc + ca =  \frac{22}{2}  = 11 \\ now \\  {a}^{3}  +  {b}^{3}  +  {c}^{3}  - 3bc \\ = (a + b + c)( {a}^{2}  +  {b}^{2} +   {c}^{2}  - ab - bc - ca) \\ 36 - 3abc = 6(14 - 11) \\ 36 - 3abc = 18 \\ 3abc = 18 \\ abc = 6

Similar questions