Math, asked by saryka, 2 months ago

⠀⠀
Q22. If \sf{\bigg(x+\dfrac{1}{x}\bigg)=4} and \sf{\bigg(x^2+\dfrac{1}{x^3}\bigg)=12}, then what would be the value of \sf{\bigg(x^3+\dfrac{1}{x^2}\bigg)}?

(1) 20
(2) 26
(3) 66
(4) 54​

Answers

Answered by OoINTROVERToO
62

OPTION 4 → 54

Step-by-step explanation:

GIVEN

  • x + 1/x = 4 _(i)
  • x² + 1/x³ = 12

Squaring eqn (i)

  • (x + 1/x)² = 16
  • x² + 1/x² = 14 _(ii)

Cubing eqn (i)

  • (x + 1/x)³ = 4³
  • x³ + 1/x³ + 3(x + 1/x) = 64
  • x³ + 1/x³ = 52 _(iii)

(ii) + (iii)

  • x² + 1/x² + x³ + 1/x³ = 14 + 52
  • (x² + 1/x³) + (x³ + 1/x²) = 66
  • 12 + x³ + 1/x² = 66
  • x³ + 1/x² = 54
Similar questions