Math, asked by saryka, 2 months ago

Q22. Let ABC be an acute-angled triangle with circumcenter O. Let P on BC be the foot of the altitude from A. Suppose that ∠BCA ≥ ∠ABC + 30°. Prove that, ∠CAB + ∠COP < 90°.​

Answers

Answered by mathdude500
108

\large\underline{\sf{Solution-}}

➢Let assume that 'l' draw perpendicular bisector of BC. Let further assume that reflection of points A and P under 'l' be R and Q.

➢So, APQR is a rectangle, and BQ = PC and triangle RQB is congruent to triangle ACB (By RHS Congruency Rule)

So, RB = AC.

We know,

➢Equal chords subtends equal angles at the centre.

∴ ∠ROB = ∠AOC-----(1).

Now, also we know that,

➢Angle subtended at the centre is twice the angle subtended at the circumference by the same arc.

\rm :\longmapsto\:\angle AOB = 2\angle ACB

and

\rm :\longmapsto\:\angle AOC = 2\angle ABC

It is given that,

\rm :\longmapsto \: \angle BCA \geqslant \angle ABC + 30\degree

On multiply by 2 on both sides, we get

\rm :\longmapsto \: 2\angle BCA \geqslant 2\angle ABC + 60\degree

\rm :\longmapsto \: \angle AOB \geqslant \angle AOC + 60\degree

\rm :\longmapsto \: \angle AOB \geqslant \angle ROB + 60\degree

[ using (1) ]

\rm :\longmapsto \: \angle AOB  -  \angle ROB  \geqslant  60\degree

\rm :\longmapsto \: \angle AOR \geqslant  60\degree

Now,

\rm :\longmapsto \: Consider \: \triangle AOR

\rm :\longmapsto \: \angle AOR \geqslant  60\degree

➢By using triangle inequality, we get

\rm :\implies\:AR \geqslant OR

\rm :\implies\:AR \geqslant r

\rm :\implies\:QP \geqslant r -  -  - (2)

Now,

\rm :\longmapsto \: Consider \: \triangle QOC

➢ We know, sum of two sides of a triangle is greater than third side.

So, using this,

\rm :\longmapsto\:OQ + OC &gt; QC

\rm :\longmapsto\:OQ + OC &gt; QP + PC -  -  - (3)

On comparing equation (2) and (3), we get

\rm :\longmapsto\:OP  &gt;  PC

We know, angle opposite to longest side is always greater

\rm :\implies\:\angle OCP  &gt;  \angle COP -  -  - (4)

Now,

\rm :\longmapsto\:In \: \triangle  \: BOC

\rm :\longmapsto\:OB \:  =  \: OC = r

\rm :\longmapsto\:\angle OBC \:  =  \: \angle OCB

Thus,

\rm :\longmapsto\:\angle BOC = 180\degree  - 2\angle OCB

can be rewritten as

\rm :\longmapsto\:\angle BOC = 180\degree  - 2\angle OCP

can be rewritten as

\rm :\longmapsto\:2\angle BAC = 180\degree  -2 \angle OCP

\rm :\longmapsto\:\angle BAC = 90\degree  - \angle OCP

\rm :\longmapsto\:\angle BAC  \:  +  \: \angle OCP \:  =  \: 90\degree  -  -  - (5)

From equation (4) and (5) we concluded that

\rm :\longmapsto\:\angle BAC  \:  +  \: \angle COP \:   &lt;   \: 90\degree

Attachments:
Answered by shiza7
24

Answer:

referred to the attachment.

Attachments:
Similar questions