Math, asked by alishajad, 6 months ago

Q22. Subtract 13/16-5/12 is: *
O 11/32
19/48
O
12/48​

Answers

Answered by Anonymous
1

Step-by-step explanation:

Step-by-step explanation:

Step-by-step explanation:

\huge\mathfrak\green{\bold{\underline{☘{ ℘ɧεŋσɱεŋศɭ}☘}}} </p><p>☘℘ɧεŋσɱεŋศɭ☘</p><p>	</p><p> </p><p></p><p>\red{\bold{\underline{\underline{❥Question᎓}}}}

❥Question᎓

integrate the function :

\frac{1}{x + xlogx}

x+xlogx

1

\huge\tt\underline\pink{꧁Answer꧂ } </p><p>꧁Answer꧂

╔════════════════════════╗

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _✍️

⟹ \frac{1}{x + xlogx} = \frac{1}{x(1 + logx)}⟹

x+xlogx

1

=

x(1+logx)

1

Let 1+logx=t

Differentiating both sides w.r.t.x

⟹ 0 + \frac{1}{x} = \frac{dt}{dx}⟹0+

x

1

=

dx

dt

⟹ \frac{1}{x} = \frac{dt}{dx}⟹

x

1

=

dx

dt

dx = xdtdx=xdt

Integrating function:-

⟹∫ \frac{1}{x + xlogx} dx = ∫ \frac{1}{x(1 + logx)} dx⟹∫

x+xlogx

1

dx=∫

x(1+logx)

1

dx

Putting 1+logx & dx =xdt

= ∫ \frac{1}{x(t)} dt \times x = ∫ \frac{1}{t} dt=∫

x(t)

1

dt×x=∫

t

1

dt

= log |t| + c=log∣t∣+c

Put t=1+logx

= log |1 + logx| + c=log∣1+logx∣+c

╚════════════════════════╝

нσρє ıт нєłρs yσυ

_____________________

тнαηkyσυ

Similar questions