Math, asked by suhanirai7088, 2 months ago

Q23. Show that one and only one out of m, m + 1,
m + 2 or m + 3 is divisible by 4, where m is any
integer.​

Answers

Answered by bba37601
0

Step-by-step explanation:

Let 'a' be any positive integer.

On dividing it by 3 , let 'q' be the quotient and 'r' be the remainder.

Such that ,

a = 3q + r , where r = 0 ,1 , 2

When, r = 0

∴ a = 3q

When, r = 1

∴ a = 3q + 1

When, r = 2

∴ a = 3q + 2

When , a = 3q

On squaring both the sides,

\begin{gathered} {a}^{2} = 9 {q}^{2} \\ {a}^{2} = 3 \times (3 {q}^{2} ) \\ {a}^{2} = 3 \\ where \: m = 3 {q}^{2} \end{gathered}

a

2

=9q

2

a

2

=3×(3q

2

)

a

2

=3

wherem=3q

2

When, a = 3q + 1

On squaring both the sides ,

\begin{gathered} {a}^{2} = (3q + 1)^{2} \\ {a}^{2} = 9 {q}^{2} + 2 \times 3q \times 1 + {1}^{2} \\ {a}^{2} = 9 {q}^{2} + 6q + 1 \\ {a}^{2} = 3(3 {q}^{2} + 2q) + 1 \\ {a}^{2} = 3m + 1 \\ where \: m \: = 3 {q}^{2} + 2q\end{gathered}

a

2

=(3q+1)

2

a

2

=9q

2

+2×3q×1+1

2

a

2

=9q

2

+6q+1

a

2

=3(3q

2

+2q)+1

a

2

=3m+1

wherem=3q

2

+2q

When, a = 3q + 2

On squaring both the sides,

\begin{gathered} {a}^{2} = (3q + 2)^{2} \\ {a}^{2} = 3 {q}^{2} + 2 \times 3q \times 2 + {2}^{2} \\ {a}^{2} = 9 {q}^{2} + 12q + 4 \\ {a}^{2} = (9 {q}^{2} + 12q + 3) + 1 \\ {a}^{2} = 3(3 {q}^{2} + 4q + 1) + 1 \\ {a}^{2} = 3m + 1 \\ where \: m \: = 3 {q}^{2} + 4q + 1\end{gathered}

a

2

=(3q+2)

2

a

2

=3q

2

+2×3q×2+2

2

a

2

=9q

2

+12q+4

a

2

=(9q

2

+12q+3)+1

a

2

=3(3q

2

+4q+1)+1

a

2

=3m+1

wherem=3q

2

+4q+1

Therefore , the square of any positive integer is either of the form 3m or 3m+1.

Answered by kaushlendrasisodia19
0

Answer:

m is any integer

m = 4q , 4q+1 , 4q+2 , 4q+3

Similar questions