Math, asked by amitabhdas38661, 19 days ago

Q25. If A = [ 3 1 −1 2 ], then A² - 5A – 7I is (a) a zero matrix (b) an identity matrix (c) diagonal matrix (d) none of these

Answers

Answered by varadad25
2

Answer:

The matrix A² - 5A - 7I is diagonal matrix.

Option c) diagonal matrix

Step-by-step-explanation:

NOTE: Refer to the attachments for the answer in app.

We have given a matrix A.

We have to find the type of the matrix A² - 5A - 7I.

The given matrix is

\displaystyle{\sf\:A\:=\:\begin{bmatrix}\:\sf\:3 & \sf\:1\\\sf\:-\:1 & \sf\:2\\\end{bmatrix}}

Now, finding the matrix A²,

\displaystyle{\sf\:A^2\:=\:A\:\times\:A}

\displaystyle{\implies\sf\:A^2\:=\:\begin{bmatrix}\:\sf\:3 & \sf\:1\\\sf\:-\:1 & \sf\:2\\\end{bmatrix}\:\times\:\begin{bmatrix}\:\sf\:3 & \sf\:1\\\sf\:-\:1 & \sf\:2\\\end{bmatrix}}

\displaystyle{\implies\sf\:A^2\:=\:\begin{bmatrix}\:\sf\:3\:\times\:3\:+\:1\:\times\:-\:1 & \sf\:3\:\times\:1\:+\:1\:\times\:2\\\sf\:-\:1\:\times\:3\:+\:2\:\times\:-\:1 & \sf\:-\:1\:\times\:1\:+\:2\:\times\:2\\\end{bmatrix}}

\displaystyle{\implies\sf\:A^2\:=\:\begin{bmatrix}\:\sf\:9\:-\:1 & \sf\:3\:+\:2\\\sf\:-\:3\:-\:2 & \sf\:-\:1\:+\:4\\\end{bmatrix}}

\displaystyle{\implies\:\boxed{\pink{\sf\:A^2\:=\:\begin{bmatrix}\:\sf\:8 & \sf\:5\\\sf\:-\:5 & \sf\:3\\\end{bmatrix}}}}

Now, finding the matrix 5A,

\displaystyle{\sf\:5A\:=\:5\:\times\:A}

\displaystyle{\implies\sf\:5A\:=\:5\:\times\:\begin{bmatrix}\:\sf\:3 & \sf\:1\\\sf\:-\:1 & \sf\:2\\\end{bmatrix}}

\displaystyle{\implies\sf\:5A\:=\:\begin{bmatrix}\:\sf\:3\:\times\:5 & \sf\:1\:\times\:5\\\sf\:-\:1\:\times\:5 & \sf\:2\:\times\:5\\\end{bmatrix}}

\displaystyle{\implies\:\boxed{\blue{\sf\:5A\:=\:\begin{bmatrix}\:\sf\:15 & \sf\:5\\\sf\:-\:5 & 10\\\end{bmatrix}}}

Now, finding the matrix 7I,

\displaystyle{\sf\:7I\:=\:7\:\times\:I}

\displaystyle{\implies\sf\:7I\:=\:7\:\times\:\begin{bmatrix}\:\sf\:1 & \sf\:0\\\sf\:0 & \sf\:1\\\end{bmatrix}}

\displaystyle{\implies\sf\:7I\:=\:\begin{bmatrix}\:\sf\:1\:\times\:7 & \sf\:0\:\times\:7\\\sf\:0\:\times\:7 & \sf\:1\:\times\:7\\\end{bmatrix}}

\displaystyle{\implies\:\boxed{\green{\sf\:7I\:=\:\begin{bmatrix}\:\sf\:7 & \sf\:0\\\sf\:0 & \sf\:7\\\end{bmatrix}}}}

Now, we have to find,

\displaystyle{\sf\:A^2\:-\:5A\:-\:7I}

\displaystyle{\implies\sf\:\begin{bmatrix}\:\sf\:8 & \sf\:5\\\sf\:-\:5 & \sf\:3\\\end{bmatrix}\:-\:\begin{bmatrix}\:\sf\:15 & \sf\:5\\\sf\:-\:5 & 10\\\end{bmatrix}\:-\:\begin{bmatrix}\:\sf\:7 & \sf\:0\\\sf\:0 & \sf\:7\\\end{bmatrix}}

\displaystyle{\implies\sf\:\begin{bmatrix}\:\sf\:8\:-\:15 & \sf\:5\:-\:5\\\sf\:-\:5\:-\:(\:-\:5\:) & \sf\:3\:-\:10\\\end{bmatrix}\:-\:\begin{bmatrix}\:\sf\:7 & \sf\:0\\\sf\:0 & \sf\:7\\\end{bmatrix}}

\displaystyle{\implies\sf\:\begin{bmatrix}\:\sf\:-\:7 & \sf\:0\\\sf\:-\:5\:+\:5 & \sf\:-\:7\\\end{bmatrix}\:-\:\begin{bmatrix}\:\sf\:7 & \sf\:0\\\sf\:0 & \sf\:7\\\end{bmatrix}}

\displaystyle{\implies\sf\:\begin{bmatrix}\:\sf\:-\:7 & \sf\:0\\\sf\:0 & \sf\:-\:7\\\end{bmatrix}\:-\:\begin{bmatrix}\:\sf\:7 & \sf\:0\\\sf\:0 & \sf\:7\\\end{bmatrix}}

\displaystyle{\implies\sf\:\begin{bmatrix}\:\sf\:-\:7\:-\:7 & \sf\:0\:-\:0\\\sf\:0\:-\:0 & \sf\:-\:7\:-\:7\\\end{bmatrix}}

\displaystyle{\implies\:\boxed{\red{\sf\:A^2\:-\:5A\:-\:7I\:=\:\begin{bmatrix}\:\sf\:-\:14 & \sf\:0\\\sf\:0 & \sf\:-\:14\\\end{bmatrix}}}}

Here, the diagonal elements are - 14 i. e. non-zero and the remaining elements are zero.

∴ The matrix A² - 5A - 7I is diagonal matrix.

Attachments:
Similar questions