Math, asked by proshmitchaudhuri, 1 month ago

Q25. If α and β are the zeroes of the quadratic polynomial 2x²+5x+1, then find the value of α²+ β².​

Answers

Answered by mathdude500
11

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\: \alpha , \beta  \: are \: zeroes \: of \: polynomial \:  {2x}^{2} + 5x + 1

We know

\boxed{\red{\sf Product\ of\ the\ zeroes=\frac{Constant}{coefficient\ of\ x^{2}}}}

\bf\implies \: \alpha  \beta  = \dfrac{1}{2}

And

\boxed{\red{\sf Sum\ of\ the\ zeroes=\frac{-coefficient\ of\ x}{coefficient\ of\ x^{2}}}}

\bf\implies \: \alpha  +  \beta  =  -  \: \dfrac{5}{2}

Now, Consider

\red{\rm :\longmapsto\: { \alpha }^{2}  +  { \beta }^{2}  \: }

\rm \:  =  \:  { \alpha }^{2}  +  { \beta }^{2}  + 2 \alpha  \beta  - 2 \alpha  \beta

\rm \:  =  \:  {( \alpha  +  \beta) }^{2}  - 2 \alpha  \beta

\rm \:  =  \:  {\bigg[ - \dfrac{5}{2} \bigg]}^{2}  - 2 \times \dfrac{1}{2}

\rm \:  =  \: \dfrac{25}{4}  - 1

\rm \:  =  \: \dfrac{25 - 4}{4}

\rm \:  =  \: \dfrac{21}{4}

Hence,

\red{\rm :\longmapsto\: \boxed{ \tt{ \: { \alpha }^{2}  +  { \beta }^{2}  \: } =  \frac{21}{4} \: }}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

\red{\rm :\longmapsto\: \alpha , \beta , \gamma  \: are \: zeroes \: of \: a {x}^{3}  + b {x}^{2} +  cx + d, \: then}

\boxed{ \bf{ \:  \alpha  +  \beta  +  \gamma  =  - \dfrac{b}{a}}}

\boxed{ \bf{ \:  \alpha \beta   +  \beta \gamma   +  \gamma  \alpha  =   \dfrac{c}{a}}}

\boxed{ \bf{ \:  \alpha  \beta  \gamma  =  - \dfrac{d}{a}}}

Similar questions