Math, asked by saryka, 2 months ago

Q25. If \sf{y=[x+\sqrt{x^2+1}]^m}, show that (x² + 1) y₂ + xy₁ - m²y = 0.​

Answers

Answered by mathdude500
119

Formula Used :-

 \boxed{ \red{ \sf \: \dfrac{d}{dx} \sqrt{x} = \dfrac{1}{2 \sqrt{x}}}}

 \boxed{ \red{ \sf \: \dfrac{d}{dx} {x}^{n} =  {nx}^{n - 1}}}

 \boxed{ \red{ \sf \: \dfrac{d}{dx}logx = \dfrac{1}{x}}}

 \boxed{ \red{ \sf \: \dfrac{d}{dx}k = 0}}

 \boxed{ \red{ \sf \: \dfrac{dy}{dx} = y_1}}

 \boxed{ \red{ \sf \: \dfrac{d}{dx}y_1 = y_2}}

 \boxed{ \red{ \sf \:log {x}^{y} = y \: logx}}

 \boxed{ \red{ \sf \: \dfrac{d}{dx}u.v = u\dfrac{d}{dx}v \:  +  \: v\dfrac{d}{dx}u}}

Step by step calculation :-

↝ Consider,

\rm :\longmapsto\:y =  {(x +  \sqrt{ {x}^{2}  + 1}) }^{m}

↝ On taking log on both sides, we get

\rm :\longmapsto\:log \: y =  log \bigg({(x +  \sqrt{ {x}^{2}  + 1}) \bigg)}^{m}

\rm :\longmapsto\:log \: y = m \:  log \bigg({(x +  \sqrt{ {x}^{2}  + 1}) \bigg)}

↝ On differentiating both sides, w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}log \: y = \dfrac{d}{dx} \: m \:  log \bigg({(x +  \sqrt{ {x}^{2}  + 1}) \bigg)}

\rm :\longmapsto\:\dfrac{1}{y} \dfrac{d}{dx} \: y = m\dfrac{d}{dx} \:  log \bigg({(x +  \sqrt{ {x}^{2}  + 1}) \bigg)}

\rm :\longmapsto\:\dfrac{1}{y}y_1 = m\dfrac{1}{x +  \sqrt{ {x}^{2} + 1}}\dfrac{d}{dx}(x +  \sqrt{ {x}^{2} + 1})

\rm :\longmapsto\:\dfrac{1}{y}y_1 = \dfrac{m}{x +  \sqrt{ {x}^{2} + 1}} \bigg(1 +  \dfrac{1}{2\sqrt{ {x}^{2} + 1}} \times 2x  \bigg)

\rm :\longmapsto\:\dfrac{1}{y}y_1 = \dfrac{m}{x +  \sqrt{ {x}^{2} + 1}} \bigg(1 +  \dfrac{x}{\sqrt{ {x}^{2} + 1}} \bigg)

\rm :\longmapsto\:\dfrac{1}{y}y_1 = \dfrac{m}{ \cancel{x +  \sqrt{ {x}^{2} + 1}}} \bigg(\dfrac{ \cancel{\sqrt{ {x}^{2} + 1} + x}}{\sqrt{ {x}^{2} + 1}} \bigg)

\rm :\longmapsto\:\dfrac{1}{y}y_1  = \dfrac{m}{\sqrt{ {x}^{2} + 1}}

\rm :\longmapsto\:y_1 \: \sqrt{ {x}^{2} + 1} = m \: y

↝ On squaring both sides, we get

\rm :\longmapsto\: {y_1}^{2} ( {x}^{2} + 1) =  {m}^{2} {y}^{2}

↝ On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\: \dfrac{d}{dx}{y_1}^{2} ( {x}^{2} + 1) =  \dfrac{d}{dx}{m}^{2} {y}^{2}

\rm :\longmapsto\:\ ({x}^{2} + 1)\dfrac{d}{dx} {y_1}^{2}  +  {y_1}^{2}\dfrac{d}{dx}( {x}^{2} + 1) =  {m}^{2}\dfrac{d}{dx} {y}^{2}

\rm :\longmapsto\:( {x}^{2}  + 1)2y_1y_2 +  {y_1}^{2}(2x) =  {m}^{2}2yy_1

\rm :\longmapsto\:2y_1(( {x}^{2}  + 1)y_2 +  {y_1}x) =  {m}^{2}2yy_1

\rm :\longmapsto\:( {x}^{2}  + 1)y_2 +  {y_1}x =  {m}^{2}y

\rm :\longmapsto\:( {x}^{2}  + 1)y_2 +  {y_1}x  - {m}^{2}y = 0

{\boxed{\boxed{\bf{Hence, Proved}}}}

Additional Information :-

 \boxed{ \red{ \sf \: \dfrac{d}{dx} sinx = cosx}}

 \boxed{ \red{ \sf \: \dfrac{d}{dx} cosx =  - sinx}}

 \boxed{ \red{ \sf \: \dfrac{d}{dx} tanx =  {sec}^{2}x}}

 \boxed{ \red{ \sf \: \dfrac{d}{dx} secx = secx \: tanx}}

 \boxed{ \red{ \sf \: \dfrac{d}{dx} cotx =   - {cosec}^{2}x}}

 \boxed{ \red{ \sf \: \dfrac{d}{dx}{e}^{x}  ={e}^{x}}}

Similar questions