Science, asked by tejasrimurthy, 4 months ago

Q28. A pendulum oscillates 81 times in 9 seconds. Find its time period and
frequency.​

Answers

Answered by Clαrissα
13

 \large\bf{ \purple{ \underline{ \underline{Answer :}}}}

  • Time period of the pendulum is 0.1 seconds.

  • Frequency of the pendulum is 10 Hz.

Given :

  • Time taken by the pendulum to oscillate 81 times = 9 seconds.

  • Number of oscillations = 81 times.

To Find :

  • Time period and frequency of the pendulum.

Calculation :

Firstly we'll calculate the time period of the pendulum,

As we know that,

 \boxed{ \pmb{ \rm{ \red{Time \:  period = \dfrac{Time \: taken}{Number \:  of  \: oscillations}}}}}

Here,

  • Time taken (T) = 9 seconds
  • Number of oscillations = 81 times

Putting the values,

 \longrightarrow \sf  {Time  \: period}_{(Pendulum)} =  \dfrac{Time \:  taken}{Number \:  of \:  oscillations} \\  \\  \\ \longrightarrow \sf  {Time  \: period}_{(Pendulum)} = \cancel  \dfrac{9 \: }{81} \\  \\  \\  \longrightarrow {\boxed{\sf  {Time  \: period}_{(Pendulum)} = 0.1 \: s}} \:  \blue{ \bigstar}

Therefore, time period of the pendulum is 0.1 seconds.

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

 \dag Now, let's calculate the frequency for the pendulum,

Formula to be used :

  •  \boxed{ \rm{ \pmb{ \pink{ \: Frequency \:  (F) =  \dfrac{1}{Time \: period \: (T)  \: }}}}}

 \bullet Frequency is always calculated in Hz.

Putting the values,

 \longrightarrow \sf \: Frequency = \cancel\dfrac{1}{0.1} \\  \\  \\ \longrightarrow { \boxed{\sf \: Frequency =  10 \: Hz}} \:  \purple{ \bigstar}

Therefore, frequency of the pendulum is 10 Hz.

Answered by Anonymous
2

\huge\bf\underline\mathfrak\red{Answer :}

  1. \text{Time period of pendulum} = \sf\purple{0.1 \: seconds.}
  2. \text{Frequency of pendulum} = \sf\purple{10 \: Hertz.}

\huge\bf\underline\mathfrak\red{Step \: by \: step \: explanation :}

\huge\bf\underline\mathfrak\red{Given :}

  1. \text{Number of oscillations by pendulum} = \sf\purple{81 \: times.}
  2. \text{Time taken for completing 81 oscillations.} = \sf\purple{9 \: seconds}

\huge\bf\underline\mathfrak\red{To \: find :}

  • \text{Time period and frequency of the pendulum.}

\huge\bf\underline\mathfrak\red{Solution :}

\sf\underbrace{Finding \: time \: period \: :- }

\underline\text{We have the formula for finding time period :-}

⠀⠀⠀⠀⠀⠀\color{green}\star\:\tt Time \: period \:  =  \dfrac{Number \: of \: oscillations}{Time \: taken}

\underline\text{Putting the given values :-}

⠀⠀⠀⠀⠀⠀\star\:\tt Time \: period \:  =  \dfrac{9}{81}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀\implies \sf\red{0.1 \: seconds}

\sf\underbrace{Finding \: Frequency \: :- }

\underline\text{We have the formula for finding frequency :-}

⠀⠀⠀⠀⠀⠀\color{green}\star\:\tt Frequency \:  =  \dfrac{1}{Time \: period}

\underline\text{Putting the calculated value :-}

⠀⠀⠀⠀⠀⠀\star\:\tt Frequency \:  =  \dfrac{1}{0.1}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀\implies \sf\red{10 \: Hz}

Hence,

  1. \text{Time period = 0.1 seconds.}
  2. \text{Frequency = 10 hertz.}

\huge\bf\underline\mathfrak\red{Learn \: More :}

  • When a pendulum completes it's one oscillation complete in a particular time, we call it as the time period of a pendulum.
  • The time period of a pendulum depends upon length of the pendulum - How long is the pendulum or much longer is the string at which the ball is attached.
  • Frequency of a pendulum means that during a particular given time, how much the pendulum oscillates or how many times the pendulum swing in to-and-fro motion.
Similar questions