Math, asked by rahulchauhan3866, 4 days ago

Q3. (a) Evaluate (3x+2)/(x+1)+(x-2)(b) If the demand function is p=25-3X-3X2"". Find the consumer's surplus when p=7​

Answers

Answered by pulakmath007
0

SOLUTION

TO DETERMINE

 \displaystyle \: 1. \:  \sf \:  \frac{(3x + 2)}{(x + 1)}  + (x - 2)

2. If the demand function is p = 25 - 3x - 3x² . Find the consumer's surplus when p = 7

EVALUATION

1.

 \displaystyle \sf \:  \frac{(3x + 2)}{(x + 1)}  + (x - 2)

 \displaystyle \sf \: =   \frac{(3x + 2) + (x + 1)(x - 2)}{(x + 1)}

 \displaystyle \sf \: =   \frac{(3x + 2) +  {x}^{2}  - x - 2}{(x + 1)}

 \displaystyle \sf \: =   \frac{  {x}^{2}  + 2x }{(x + 1)}

2.

Here it is given that the demand function is p = 25 - 3x - 3x²

For p = 7 we get

25 - 3x - 3x² = 7

⇒ 3x² + 3x - 18 = 0

⇒ x² + x - 6 = 0

⇒ x = - 3 , x = 2

Since x can not be negative

So x = 2

Now the consumer's surplus when p = 7

\displaystyle  =  \sf\int\limits_{0}^{x} p(x)  \, dx - xp(x)

\displaystyle  =  \sf\int\limits_{0}^{2} (25 - 3x - 3 {x}^{2})  \, dx - 2p(2)

\displaystyle  =  \sf \left. 25x - 3\frac{x^2}{2}  -  {x}^{3}  \right|_0^2 - 2p(2)

\displaystyle  =  \sf (25 \times 2) - \frac{3}{2} \times 4  -  {2}^{3}   - (2 \times 7)

\displaystyle  =  \sf 50 - 6 - 8 - 14

\displaystyle  =  \sf 22

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. The demand function of a product X is given as: Dx = 12-2Px stands for price. The demand at price ` 2 will be:

https://brainly.in/question/20907627

2. If total cost of producing 5 units of

output is Rs. 50 and of producing 6 units

of output is Rs. 65, then the Margin...

https://brainly.in/question/29060482

Similar questions