Q3.Factorise the following polynomials.
(a) 6p(p – 3) + 1 (p – 3)
(b) 14(3y – 5z)3 + 7(3y – 5z)2
Answers
Answer:
Answer...Mark me brainliest
Question ❶ :
›»› 6p(p - 3) + 1(p - 3).
Answer :
›»› The factorization of 6p(p - 3) + 1(p - 3) is
Given :
- 6p(p - 3) + 1(p - 3).
To Find :
- Factorize the expression.
Solution :
→ 6p(p - 3) + 1(p - 3)
Any expression multiplied by 1 remains the same,
→ 6p(p - 3) + (p - 3)
Factor out p - 3 from the expression,
→ (p - 3) (6p - 1)
Hence, the factorization of 6p(p - 3) + 1(p - 3) is (p - 3) (6p - 1).
________________...
Question ❷ :
›»› 14(3y - 5z)³ + 7(3y - 5z)².
Given :
- 14(3y - 5z)³ + 7(3y - 5z)².
To Find :
- Factorize the expression.
Solution :
→ 14(3y - 5z)³ + 7(3y - 5z)²
Bind the expression with the common factor 7(3y - 5z)²,
→ 7(3y - 5z)² (2(3y - 5z) + 1)
Expand the binomial expression,
→ 7(9y² - 30yz + 24z²) (2(3y - 5z) + 1)
Organize the expression with the distributive law,
→ 7(9y² - 30yz + 24z²) (6y - 10z + 1)
Sort the factors,
→ 7(3y - 5z)² (6y - 10z + 1)
Hence, the factorization of 14(3y - 5z)³ + 7(3y - 5z)² is 7(3y - 5z)² (6y - 10z + 1).
Additional Information :
✒ Factozisation :
Factorizing is to make a single term: try to write everything as products (multiplication), for example:
→ 6x² - 9x + 10 = (2x - 5) (3x - 2)
Step ① :
Find a common factor
Example:
→ 4xy + x⁴ + x = x(4x + x³ + 1)
Step ② :
Count the number of terms
(terms are separated by + or −)
If none of these methods work, re-arrange the terms, or remove brackets and start again.