Math, asked by sonuloath, 3 days ago

Q3. For what value(s) of k, are the roots of quadratic equation are equal ? (k +1)x² -2(K-1 )x + 1 = 0 -

Answers

Answered by Syamkumarr
0

Answer:

The value of k =0 or k=3

Step-by-step explanation:

Given equation   (k +1)x² -2(K-1 )x + 1 = 0

compare the equation with ax^{2} +bx+c=0

 ⇒ a = (k+1) ,  b= -2(k-1)  and   c = 1

roots of given equation are real

        Δ = b^{2} - 4ac = 0

            [-2(k-1) } ]^{2} - 4 (k+1) (1) =0

            4 (k-1)^{2}- 4(k+1) =0

            4 [ (k-1)^{2} -(k+1)] =0[( k-1)^{2} = k^{2} +1-2k]   from (a-b)^{2} = a^{2} +b^{2} -2b]

               k^{2} +1- 2k -k-1=0  

                 k^{2} -3k =0 ⇒   k( k -3)=0

                   k= 0  or    (k-3)=0

                                       k=3

             

Similar questions