Math, asked by saryka, 2 months ago

Q3. Shows that the projectile angle \theta_0=\tan^{-1}\bigg\lgroup\sf{\dfrac{4h_m}{R}}\bigg\rgroup, where the symbols have their usual meaning.​

Answers

Answered by mathdude500
80

\large\underline{\sf{Solution-}}

Let first represent what symbol means,

\rm :\longmapsto\:h_m \:  =  \: maximum \: height \: of \: projectile

\rm :\longmapsto\:R \:  =  \: horizontal \: range \: of \: projectile

\rm :\longmapsto\:u_0 \: is \: the \: initial \: velocity

We know,

The maximum height of projectile is given by,

 \rm :\longmapsto\:h_m = \dfrac{ {u_0}^{2} {sin}^{2}\theta}{2g} -  -  - (1)

and

The horizontal range of the projectile is given by

 \rm :\longmapsto\:R = \dfrac{ {u_0}^{2} {sin}2\theta}{g} -  -  - (2)

Divide equation (1) by equation (2), we get

\rm :\longmapsto\:\dfrac{h_m}{R} = \dfrac{\dfrac{ \cancel{ {u_0}^{2}}  {sin}^{2} \theta}{2 \:  \cancel{g}} }{\dfrac{ \cancel {u_0}^{2}sin2\theta}{ \cancel{g}}}

\rm :\longmapsto\:\dfrac{h_m}{R} = \dfrac{ {sin}^{2}\theta}{2 \: sin2\theta}

\rm :\longmapsto\:\dfrac{h_m}{R} = \dfrac{ {sin}^{2}\theta}{2 \times 2 \times sin\theta \times cos\theta}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \red{\bigg \{ \because \:sin2\theta = 2sin\theta \: cos\theta \bigg \}}

\rm :\longmapsto\:\dfrac{h_m}{R} = \dfrac{ {sin}\theta}{4cos\theta}

\rm :\longmapsto\:\dfrac{h_m}{R} = \dfrac{ {tan}\theta}{4}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \red{\bigg \{ \because \:\dfrac{sin\theta}{cos\theta} = tan\theta  \bigg \}}

\rm :\longmapsto\:\dfrac{4h_m}{R} = tan\theta

\rm :\longmapsto\: \: \theta \:  =  \:  {tan}^{ - 1} \bigg(\dfrac{4h_m}{R} \bigg)

Additional Information :-

Time of flight of projectile motion :-

\rm :\longmapsto\:t \:  =  \: \dfrac{2u_0 \: sin\theta}{g}

Answered by Anonymous
14

\Huge\sf\mathbb\color{red}\underline{\colorbox{cyan}{Answer}}

The maximum vertical height is given as,

 h_{m}  =   \frac{ u_{o}  {sin}^{2} o_{o}  }{2g}

The horizontal range is given as,

r =   \frac{ u_{o}  {sin}^{2}  o_{o} }{g}

From equation 1 and 2 ,we get

 \frac{ h_{m} }{r}   =  \frac{ {sin}^{2}  o_{o}}{2 {sin}^{2} 2 o_{o} }

 \frac{ h_{m} }{r}  =  \frac{sin \:  o_{o}}{4 \cos }

tan \:  o_{o} =  \frac{4 h_{m} }{r}

 o_{o}  =  {tan}^{ - 1} ( \frac{4 h_{m} }{r} )

☯︎Mark me Brainlist☯︎

Similar questions