Math, asked by amitpalei50, 6 hours ago

Q3. The integral value of S sin 2x sin x dx is​

Answers

Answered by harshaljore7
0

Step-by-step explanation:

0

2

π

sin2xsinxdx=K∫

0

2

π

cos2xcosxdx

0

2

π

2sinxcosxsinxdx=K∫

0

2

π

(1−2sin

2

x)cosxdx

0

2

π

2sin

2

xcosxdx=K

0

2

π

cosxdx−∫

0

2

π

2sin

2

xcosxdx

{

3

2sin

3

x

}

0

2

π

=K

{sinx}

0

2

π

−{

3

2sin

3

x

}

0

2

π

3

2

=K[1−

3

2

]

Answered by pulakmath007
4

SOLUTION

TO EVALUATE

\displaystyle  \sf{\int\limits_{}^{}   \sin 2x \sin x \:  \, dx}

EVALUATION

We have to find the value of

\displaystyle  \sf{\int\limits_{}^{}   \sin 2x \sin x \:  \, dx}

Here

\displaystyle  \sf{   \sin 2x \sin x \:  }

\displaystyle  \sf{  =  \frac{1}{2} \times 2   \sin 2x \sin x \:  }

\displaystyle  \sf{  =  \frac{1}{2}  \bigg[\cos (2x - x) - \cos (2x  +  x)  \bigg]}

\displaystyle  \sf{  =  \frac{1}{2}  \bigg[\cos x - \cos 3x  \bigg]}

Now

\displaystyle  \sf{\int\limits_{}^{}   \sin 2x \sin x \:  \, dx}

\displaystyle  \sf{ = \int\limits_{}^{}    \frac{1}{2}  \bigg[\cos x - \cos 3x  \bigg] \:  \, dx}

\displaystyle  \sf{ = \frac{1}{2}  \int\limits_{}^{}     \bigg[\cos x - \cos 3x  \bigg] \:  \, dx}

\displaystyle  \sf{ = \frac{1}{2}  \int\limits_{}^{}     \cos x   \, dx} - \displaystyle  \sf{  \frac{1}{2}  \int\limits_{}^{}      \cos 3x  \:  \, dx}

\displaystyle  \sf{ = \frac{1}{2}  \sin x -  \frac{1}{6} \sin 3x  + c }

Where c is integration constant

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. If integral of (x^-3)5^(1/x^2)dx=k5^(1/x^2), then k is equal to?

https://brainly.in/question/15427882

2. If integral of (x^-3)5^(1/x^2)dx=k5^(1/x^2), then k is equal to?

https://brainly.in/question/15427882

Similar questions