Math, asked by saryka, 1 month ago

Q32. In the given figure, if radius of circle is 3cm. Find the perimeter of ∆ABC.​

Attachments:

Answers

Answered by mathdude500
90

\large\underline{\sf{Solution-}}

★ Given that

  • Radius of in-circle, r = 3 cm

★ Let assume that incircle of radius r touches BC, AB, AC at D, E, F respectively.

We know,

★ Radius and tangent are perpendicular to each other.

So,

OD, OE, OF are perpendiculars to BC, BA, AC respectively.

Now,

It is given that

\rm :\longmapsto\:OC = OB = 3 \sqrt{5}  \: cm

Now,

\bf :\longmapsto\:In \:  \triangle  \: ODC

★ Using Pythagoras Theorem,

\rm :\longmapsto\: {OC}^{2} =  {OD}^{2} +  {DC}^{2}

\rm :\longmapsto\: {(3 \sqrt{5} )}^{2} =  {3}^{2} +  {DC}^{2}

\rm :\longmapsto\: 45 = 9 +  {DC}^{2}

\rm :\longmapsto\: 45 - 9 =  {DC}^{2}

\rm :\longmapsto\: 36 =  {DC}^{2}

\bf\implies \:DC = 6 \: cm

We know,

★ Length of tangents drawn from external point are equal.

\bf\implies \:DC = CF = 6 \: cm

Similarly,

\bf\implies \:DB = BE = 6 \: cm

Now,

★ Let assume that AF = x cm

  • So,

  • AF = AE = x cm.

So,

★ Dimensions of triangle ABC are as

  • AB = 6 + x cm

  • BC = 12 cm

  • CA = 6 + x cm

Now, we evaluate area of triangle ABC,

\bf :\longmapsto\:Ar_{(\triangle ABC)}

 \rm \:  \:  =  \: Ar_{(\triangle AOC)} + Ar_{(\triangle AOB)} + Ar_{(\triangle BOC)}

 \rm \:  \:  =  \:\dfrac{1}{2}(r)CA +  \dfrac{1}{2}(r)AB + \dfrac{1}{2}(r)BC

 \rm \:  \:  =  \: \dfrac{1}{2}(r)(AC + AB + BC)

 \rm \:  \:  =  \: \dfrac{1}{2}(3)(6 + x + 6 + x + 12)

 \rm \:  \:  =  \: \dfrac{1}{2}(3)(24 + 2x)

 \rm \:  \:  =  \: \dfrac{1}{2}(3)(2)(12 + x)

 \rm \:  \:  =  \: 3(12 + x)

\bf\implies \:Ar_{(\triangle ABC)} = 3(12 + x) -  -  - (1)

Again,

Evaluate the area of triangle ABC using Heron's Formula,

★ Dimensions of triangle ABC are as

  • c = AB = 6 + x cm

  • a = BC = 12 cm

  • b = CA = 6 + x cm

★ Semi-perimeter (s) of triangle ABC is

\bf :\longmapsto\:s = \dfrac{1}{2}(a + b + c)

 \rm \:  \:  =  \: \dfrac{1}{2}(6 + x + 12 + 6 + x)

 \rm \:  \:  =  \: \dfrac{1}{2}(24 +2x)

 \rm \:  \:  =  \: 12 + x

\bf\implies \:s = 12 + x

Now,

★ We know area of triangle ABC using Heron's formula is

\bf :\longmapsto\:Ar_{(\triangle ABC)} =  \sqrt{s(s - a)(s - b)(s - c)}

 \rm \:  \:  =  \:  \sqrt{(12 + x)(12 + x - 6 - x)(12 + x - 6 - x)(12 + x - 12)}

 \rm \:  \:  =  \:  \sqrt{(12 + x)(6)(6)x}

 \rm \:  \:  =  \:  \sqrt{36x(12 + x)}

\bf\implies \:Ar_{(\triangle ABC)} =  \sqrt{36x(12 + x)}  -  -  - (2)

From equation (1) and (2), we have

\rm :\longmapsto\: \sqrt{36x(12 + x)}  = 3(12 + x)

On squaring both sides, we get

\rm :\longmapsto\:36x(12 + x) = 9 {(12 + x)}^{2}

\rm :\longmapsto\:4x = 12 + x

\rm :\longmapsto\:4x - x = 12

\rm :\longmapsto\:3x = 12

\bf\implies \:x = 4 \: cm

So,

★ Dimensions of triangle ABC are as

  • AB = 6 + x = 6 + 4 = 10 cm

  • BC = 12 cm

  • CA = 6 + x = 6 + 4 =10 cm

Hence,

\bf :\longmapsto\:Perimeter_{(\triangle ABC)} = AB + BC + CA

\rm :\longmapsto\:Perimeter_{(\triangle ABC)} = 10 + 12 + 10

\bf :\longmapsto\:Perimeter_{(\triangle ABC)} = 32 \: cm

Attachments:
Similar questions