Math, asked by saryka, 1 month ago

Q34. Let [x] denote the greatest integer less than or equal to x. Then: \displaystyle{\sf{\lim_{x\to\infty}\dfrac{\tan(\pi\sin^2x)+(|x|-sin(x[x]))^2}{x^2}}}

(1) equals π
(2) equals 0
(3) equals π + 1
(4) does not exist​

Answers

Answered by mathdude500
94

Appropriate Question

Let [x] denote the greatest integer less than or equal to x. Then

\rm :\longmapsto\:\displaystyle{\sf{\lim_{x\to \: 0}\dfrac{\tan(\pi\sin^2x)+(|x|-sin(x[x]))^2}{x^2}}}

(1) equals π

(2) equals 0

(3) equals π + 1

(4) does not exist

\large\underline{\sf{Solution-}}

Given statement is

\rm :\longmapsto\:\displaystyle{\sf{\lim_{x\to \: 0}\dfrac{\tan(\pi\sin^2x)+(|x|-sin(x[x]))^2}{x^2}}}

Consider RHL

\rm :\longmapsto\:\displaystyle{\sf{\lim_{x\to \: 0^ + }\dfrac{\tan(\pi\sin^2x)+(|x|-sin(x[x]))^2}{x^2}}}

 \red{\rm :\longmapsto\:Put \: x = 0 + h, \: as \: x \to \: 0, \: h \to \: 0}

We know,

\rm :\longmapsto\:[x] = 0 \: as \: x \:  \to \: 0^ +

\rm  \:  = \:\displaystyle{\sf{\lim_{h\to \: 0}\dfrac{\tan(\pi\sin^2h)+(|h|-sin(0))^2}{h^2}}}

\rm  \:  = \:\displaystyle{\sf{\lim_{h\to \: 0}\dfrac{\tan(\pi\sin^2h)+(|h|-0)^2}{h^2}}}

\rm  \:  = \:\displaystyle{\sf{\lim_{h\to \: 0}\dfrac{\tan(\pi\sin^2h)+(|h|)^2}{h^2}}}

\rm  \:  = \:\displaystyle{\sf{\lim_{h\to \: 0}\dfrac{\tan(\pi\sin^2h)+h^2}{h^2}}}

\rm  \:  = \:\displaystyle{\sf{\lim_{h\to \: 0}\dfrac{\tan(\pi\sin^2h)}{h^2}}} + 1

\rm  \:  = \:\displaystyle{\sf{\lim_{h\to \: 0}\dfrac{\tan(\pi\sin^2h)}{\pi\sin^2h}}} \times \dfrac{\pi\sin^2h}{ {h}^{2} }  + 1

We know,

 \boxed{ \bf{\displaystyle{\sf{\lim_{x\to \: 0} \: \frac{tanx}{x}   = 1}}}}

 \boxed{ \bf{\displaystyle{\sf{\lim_{x\to \: 0} \: \frac{sinx}{x}   = 1}}}}

\rm \:  \:  =  \:\pi + 1

So,

\rm :\longmapsto\:\displaystyle{\sf{\lim_{x\to \: 0^ + }\dfrac{\tan(\pi\sin^2x)+(|x|-sin(x[x]))^2}{x^2}}} = \pi + 1

Consider LHL

\rm :\longmapsto\:\displaystyle{\sf{\lim_{x\to \: 0^ -  }\dfrac{\tan(\pi\sin^2x)+(|x|-sin(x[x]))^2}{x^2}}}

 \red{\rm :\longmapsto\:Put \: x = 0  -  h, \: as \: x \to \: 0, \: h \to \: 0}

We know,

\rm :\longmapsto\:[x] =  - 1 \: as \: x \:  \to \: 0^  -

\rm  \:  = \:\displaystyle{\sf{\lim_{h\to \: 0}\dfrac{\tan(\pi\sin^2( - h))+(| - h|-sin( - h( - 1)))^2}{( - h)^2}}}

\rm  \:  = \:\displaystyle{\sf{\lim_{h\to \: 0}\dfrac{\tan(\pi\sin^2h)+(h-sin(h))^2}{h^2}}}

\rm  \:  = \:\displaystyle{\sf{\lim_{h\to \: 0}\dfrac{\tan(\pi\sin^2h)+(h-sinh)^2}{h^2}}}

\rm  \:  = \:\displaystyle{\sf{\lim_{h\to \: 0}\dfrac{\tan(\pi\sin^2h)+ {h}^{2} (1- \dfrac{sinh}{h} )^2}{h^2}}}

\rm  \:  = \:\displaystyle{\sf{\lim_{h\to \: 0}\dfrac{\tan(\pi\sin^2h)}{h^2}}} + (1 - 1)^{2}

\rm  \:  = \:\displaystyle{\sf{\lim_{h\to \: 0}\dfrac{\tan(\pi\sin^2h)}{\pi\sin^2h}}} \times \dfrac{\pi\sin^2h}{ {h}^{2} }  + 0

\rm \:  \:  =  \:\pi

\rm :\longmapsto\:\displaystyle{\sf{\lim_{x\to \: 0^ -  }\dfrac{\tan(\pi\sin^2x)+(|x|-sin(x[x]))^2}{x^2}}} = \pi

Thus, we concluded that

\bf :\longmapsto\:LHL \:   \ne \:  RHL

Hence,

\bf :\longmapsto\:Limit \: doesnot \: exist.

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \underbrace{\boxed{\bf{ Option \: (4) \: is \: correct }}}

Similar questions