Math, asked by saryka, 1 day ago

Q35⟩⟩ Find the equations of tangent and normal to the ellipse x² + 4y² = 32 when θ = π/4.​

Answers

Answered by mathdude500
23

\large\underline{\sf{Solution-}}

Given equation of ellipse is

\rm \:  {x}^{2} +  {4y}^{2} = 32 \\

can be further rewritten as

\rm \: \dfrac{ {x}^{2} }{32}  + \dfrac{ {4y}^{2} }{32}  = 1 \\

\rm \: \dfrac{ {x}^{2} }{32}  + \dfrac{ {y}^{2} }{8}  = 1 -  -  - (1) \\

On comparing with general equation of ellipse

\rm \: \dfrac{ {x}^{2} }{ {a}^{2} }  + \dfrac{ {y}^{2} }{ {b}^{2} }  = 1 \\

we get

\rm \:  {a}^{2} = 32\rm\implies \:a = 4 \sqrt{2}  \\

and

\rm \:  {b}^{2} = 8 \:  \: \rm\implies \:a = 2 \sqrt{2}  \\

Now, We know

Equation of tangent to the ellipse  \dfrac{ {x}^{2} }{ {a}^{2} }  + \dfrac{ {y}^{2} }{ {b}^{2} }=1 at \theta is given by

\boxed{ \rm{ \:\dfrac{x \: cos \theta}{a}  + \dfrac{y \: sin \theta}{b}  = 1 \:  \: }} \\

So, equation of tangent to equation (1) at \theta = \dfrac{\pi}{4} is

\rm \: \dfrac{x \: cos\dfrac{\pi}{4}}{4 \sqrt{2} }  + \dfrac{y \: sin\dfrac{\pi}{4}}{2 \sqrt{2} }  = 1 \\

\rm \: \dfrac{x \:}{4 \sqrt{2}  \times  \sqrt{2} }  + \dfrac{y \: }{2 \sqrt{2} \times  \sqrt{2}  }  = 1 \\

\rm \: \dfrac{x \:}{8}  + \dfrac{y \: }{4}  = 1 \\

\rm \: \dfrac{x \: +  \: 2y}{8} = 1 \\

\rm\implies \:\boxed{ \rm{ \:x + 2y = 8 \:  \: }} \\

Now, Equation of normal

Equation of normal to the ellipse  \dfrac{ {x}^{2} }{ {a}^{2} }  + \dfrac{ {y}^{2} }{ {b}^{2} }=1 at \theta is given by

\rm \: \boxed{ \rm{ \:\dfrac{ax}{cos\theta}  - \dfrac{by}{sin\theta}  =  {a}^{2} -  {b}^{2} \: }} \\

So, equation of normal to equation (1) at \theta = \dfrac{\pi}{4} is

\rm \: \dfrac{4 \sqrt{2} x}{cos\dfrac{\pi}{4}}  - \dfrac{2 \sqrt{2} y}{sin\dfrac{\pi}{4}}  =  32 - 8 \:  \\

\rm \: 4 \sqrt{2} \times  \sqrt{2}x - 2 \sqrt{2} \times  \sqrt{2} y  \: =  \: 24  \\

\rm \: 8x - 4 y  \: =  \: 24  \\

\rm \: 8(2x - y)  \: =  \: 24  \\

\rm\implies \:\boxed{ \bf{ \:2x - y = 3 \: }} \\

Similar questions