Math, asked by vsaiprabhakar, 10 months ago

Q37 Consider the following given function.
y = log[(px +q) (rx + s)]
Determine the nth differential
coefficients of y.
Ops: A
(-1)n-1
(n - 1)! [(p" / (px +
(m / (rx +s)"))
q)") -
B.
(-1) n+1 (n + 1) Iron​

Answers

Answered by biswajitbaruah1977
7

Answer:

Y=xlog(x-1/x+1) nth derivative solved - 4880352. ... Ask for details; Follow; Report ... yn = (-1)n (n-2)! (x+n)÷(x+1) n ... Hy guys. .. what is ment by bonjour in ...

Answered by ansiyamundol2
0

Answer:

\frac{d^{n}y }{dx^{n} }=(-1)^{n-1}(n-1)! [ \frac{p^{n} }{(px+q)^{n} } +\frac{r^{n} }{(rx+s)^{n} }

Step-by-step explanation:

y=log[(px+q)(rx+s)]\\

We know that : log(ab)=log a +logb

Therefore y=log(px+q)+log(rx+s)

Differentiating these terms :

\frac{dy}{dx} =\frac{1}{px+q} p+\frac{1}{rx+s} .r\\\\= \frac{p}{px+q}+\frac{r}{rx+s}  \\

Differentiating further :

\frac{d^{2}y }{dx^{2} } = \frac{d}{dx} (\frac{p}{px+q} )+\frac{d}{dx} (\frac{r}{rx+s})\\

We know that :  \frac{d}{dx} (\frac{1}{x} )=\frac{-1}{x^{2} }

So \frac{d^{2} y}{dx^{2} } =\frac{-p^{2} }{px+q}+\frac{-r^{2} }{rx+s}

Differentiating further :

\frac{d^{3}y }{dx^{3} }=-p^{2} [\frac{-2p}{(px+q)^{3} }  ]+(-r^{2} )[\frac{-2r}{(rx+s)^{2} } ]

\frac{d^{3}y }{dx^{3} }= (-1)^{2} *2[ \frac{p^{3}}{(px+q)^{3} } + \frac{r^{3}}{(rx+s)^{3} }]

By continuing further, we get that the nth differential is :

\frac{d^{n}y }{dx^{n} }=(-1)^{n-1}(n-1)! [ \frac{p^{n} }{(px+q)^{n} } +\frac{r^{n} }{(rx+s)^{n} }

Similar questions