Math, asked by saryka, 1 month ago

Q4. If sin A/sin B = √3/2 and cos A/cos B = √5/2, 0 < A, B < π/2, then find the value of tan A + tan B.​

Attachments:

Answers

Answered by mathdude500
78

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\:\dfrac{sinA}{sinB}  = \dfrac{ \sqrt{3} }{2}

\rm :\longmapsto\: sinA= \dfrac{ \sqrt{3} }{2} sinB -  -  - (1)

Also,

Given that

\rm :\longmapsto\:\dfrac{cosA}{cosB}  = \dfrac{ \sqrt{5} }{2}

\rm :\longmapsto\:cosA = \dfrac{ \sqrt{5} }{2} cosB -  -  - (2)

On squaring equation (1) and (2) and adding, we get

\rm :\longmapsto\: {sin}^{2}A +{cos}^{2}A =  \dfrac{3}{4} {sin}^{2}B +  \dfrac{5}{4} {cos}^{2}B

\rm :\longmapsto\: 1 =  \dfrac{3}{4} {sin}^{2}B +  \dfrac{5}{4} {cos}^{2}B

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \red{\bigg \{ \because \:  {sin}^{2}x +  {cos}^{2} x = 1 \bigg \}}

\rm :\longmapsto\: {3sin}^{2}B +  {5cos}^{2}B = 4

\rm :\longmapsto\: {3sin}^{2}B +  {3cos}^{2}B +  {2cos}^{2}B  = 4

\rm :\longmapsto\: 3({sin}^{2}B +  {cos}^{2}B) +  {2cos}^{2}B  = 4

\rm :\longmapsto\: 3(1) +  {2cos}^{2}B  = 4

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \red{\bigg \{ \because \:  {sin}^{2}x +  {cos}^{2} x = 1 \bigg \}}

\rm :\longmapsto\: 3 +  {2cos}^{2}B  = 4

\rm :\longmapsto\: {2cos}^{2}B  = 4 - 3

\rm :\longmapsto\: {2cos}^{2}B  = 1

\rm :\longmapsto\: {cos}^{2}B  = \dfrac{1}{2}  -  -  -  - (3)

\rm :\longmapsto\:sec^{2}B  =  2

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \red{\bigg \{ \because \: secx = \dfrac{1}{cosx} \bigg \}}

\rm :\longmapsto\:1 +  {tan}^{2}B = 2

\rm :\longmapsto\:{tan}^{2}B = 2 - 1

\rm :\longmapsto\:{tan}^{2}B = 1

\bf\implies \:tanB = 1 -  -  - (4)

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \red{\bigg \{ \because \: 0 &lt; B &lt; \dfrac{\pi}{2} \bigg \}}

Now,

From equation (2), we have

\rm :\longmapsto\:cosA = \dfrac{ \sqrt{5} }{2} cosB

Squaring both sides we get

\rm :\longmapsto\:cos^{2} A = \dfrac{5}{4} cos^{2} B

\rm :\longmapsto\: {cos}^{2}A = \dfrac{5}{4}  \times \dfrac{1}{2}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \red{\bigg \{ \because \: {cos}^{2}B = \dfrac{1}{2}   \bigg \}}

\rm :\longmapsto\: {cos}^{2}A = \dfrac{5}{8}

\rm :\longmapsto\: {sec}^{2}A = \dfrac{8}{5}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \red{\bigg \{ \because \: secx = \dfrac{1}{cosx} \bigg \}}

\rm :\longmapsto\: 1 + {tan}^{2}A = \dfrac{8}{5}

\rm :\longmapsto\:{tan}^{2}A = \dfrac{8}{5} - 1

\rm :\longmapsto\:{tan}^{2}A = \dfrac{8 - 5}{5}

\rm :\longmapsto\:{tan}^{2}A = \dfrac{3}{5}

\rm :\longmapsto\:{tan}A = \dfrac{ \sqrt{3} }{ \sqrt{5} }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \red{\bigg \{ \because \: 0 &lt; A &lt; \dfrac{\pi}{2} \bigg \}}

\rm :\longmapsto\:{tan}A = \dfrac{ \sqrt{3} }{ \sqrt{5} } \times \dfrac{ \sqrt{5} }{ \sqrt{5} }

\bf :\longmapsto\:tanA = \dfrac{ \sqrt{15} }{5}

Hence,

\bf\implies \:tanA \:  +  \: tanB = \dfrac{ \sqrt{15} }{5}  + 1

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Similar questions