Math, asked by lodaaram12, 10 months ago

Q4. Solve for x: √(2x+9) +x=13

Answers

Answered by aryan1234243
0

Answer:

2x+9+x²=169

x²+2x-160=0

solve by this

formula method u get urs answer perfectly

Answered by Anonymous
59

Answer:

 \boxed{x = 8}

Step-by-step explanation:

Solve  \: for  \: x  \: over  \: the \:  real \:  numbers:  \\  =  >  \sqrt{2x + 9}   + x = 13 \\  \\ Subtract \:  x  \: from \:  both \:  sides:  \\  =  >   \sqrt{2x + 9} + (x - x)  =13-x  \\  =  >  \sqrt{2x + 9} = 13 - x \\  \\ Raise  \: both  \: sides \:  to \:  the \:  power  \: of  \: two:  \\  =  >   {( \sqrt{2x + 9} )}^{2}   =  {(13 - x)}^{2}  \\  =  >  {(2x + 9)}^{ \cancel{2} \times  \frac{1}{ \cancel{2}} }  =  {(13 - x)}^{2} \\  =  > 2x + 9 =  {(13 - x)}^{2}   \\  \\ Expand  \: out  \: terms \:  of \:  the \:  right  \: hand  \: side:  \\  =  > 2x+9=( {13}^{2}  - 2(13)(x) +  {x}^{2} ) \\  =  > 2x + 9 = 169 - 26x +  {x}^{2}  \\ Subtract  \:  {x}^{2}  - 26 x + 169  \: from  \: both  \: sides:  \\  =  > (2x + 9) - ( {x}^{2}  - 26x + 169) = 169 - 26x +  {x}^{2}  - ( {x}^{2}  - 26x + 169) \\  =  > 2x + 9 -  {x}^{2}  + 26x - 169 =  \cancel{169} +  \cancel{- 26x} +  \cancel{{x}^{2}}  +  \cancel{-  {x}^{2} }  + \cancel{ 26x} +  \cancel{- 169} \\  =  >  -  {x}^{2}  + 28x - 160 = 0 \\  \\ The  \: left  \: hand \:  side \:  factors  \: into  \: a   \: product \: with \:  three  \: terms:  \\  =  >  - ( {x}^{2}  - 28x + 160) \\  =  >  - ( {x}^{2}   -  (20 + 8)x + 160) \\  =  >  - ( {x}^{2}  - 20x - 8x + 160) \\  =  >  - (x(x - 20) - 8(x - 20)) \\  =  >  - (x - 20)(x - 8)    \\Multiply  \: both  \: sides \:  by  - 1:  \\  =  >  - (x - 20)(x - 8) \times ( - 1) = 0 \times ( - 1) \\  =  > (x - 20)(x - 8) = 0 \\  \\ Split  \: into \:  two \:  equations:  \\    =  > x - 20=0  \:  \:  \:  \:  \:  \:  \:  \: or  \:  \:  \:  \:  \:  \:  \:  \: x-8=0  \\  \\ Add  \: 20 \:  to \:  both \:  sides:  \\  =  >   \boxed{x=20} \:  \:  \:  \:  \:  \:  \:  \:  or \:  \:  \:  \:  \:  \:  \:  \:  x-8=0  \\  \\ Add  \: 8 \:  to \:  both \:  sides: \\  =  > x = 20 \:  \:  \:  \:  \:  \:  \:  \: or \:  \:  \:  \:  \:  \:  \:  \:  \boxed{x = 8} \\ \\  \\ when \: x = 8 \\   =  >  \sqrt{2x + 9}  + x  \\ =  >  \sqrt{2 \times 8 + 9}  + 8 \\ =  >  \sqrt{25}   + 8  \\ =  > 5 + 8  \\ =  > 14  =  13 : \\ So  \: this \:  solution  \: is  \: correct \\  \\  \\ when \: x = 20 \\  =  >  \sqrt{2x + 9}  + x \\  =  >  \sqrt{2 \times 20 + 9}  + 20 \\  =  >  \sqrt{49}  + 20 \\  =  > 7 + 20 \\  =  > 27 \neq 13: \\ So \:  this  \: solution \:  is \: incorrect \\  \\   \\ The  \: solution \:  is: \\ x = 8

Similar questions