Math, asked by yohanmanikath, 8 months ago

Q4. Solve for x : x/(x+1) + (1+x)/x = 34/15 ,x ≠ 0, x ≠ -1​

Answers

Answered by rkuntal7686
1

 \frac{x}{(x + 1)}  +  \frac{(1 + x)}{x}  =  \frac{34}{15}

 \frac{ {x}^{2} + (1 + x)(x + 1) }{(x + 1)(x)}  =  \frac{34}{15}

 \frac{ {x}^{2} + x + 1 +{x}^{2} + x }{ {x}^{2} + x }  =  \frac{34}{15}

 \frac{ {2x}^{2}  + 2x + 1}{ {x}^{2} + x }  =  \frac{34}{15}

15(2 {x}^{2} + 2x + 1) = 34( {x}^{2}  + x)

30 {x}^{2} + 30x + 15 = 34 {x}^{2} + x

30x - x + 15 = 34 {x}^{2} - 30 {x}^{2}

29x + 15 = 4 {x}^{2}

4 {x}^{2}  + 29x + 15 = 0

further solve this quadratic equation and you will get the answer.......

Answered by aritra93
0

Answer:

-5/2 or, 3/2

Step-by-step explanation:

see the picture over

Attachments:
Similar questions