Math, asked by jabeengabuli, 7 months ago

Q4. The side of a square exceeds the side of the another square by 4
cm and the sum of areas of the two squares is 400 cm2. The side of the
smaller square is.. answers me as fast as possible​

Answers

Answered by Ataraxia
8

SOLUTION :-

Let,

Side of first square = x

Side of second square =  x + 4

Area of square = Side²

Area of first square = x²

Area of second square = ( x + 4 )²

According to the question,

\longrightarrow\sf x^2+(x+4)^2= 400 \\\\\longrightarrow x^2+x^2+4^2+2\times x \times 4 = 400 \\\\ \longrightarrow 2x^2+16+8x = 400 \\\\ \longrightarrow 2x^2+8x = 384 \\\\\longrightarrow 2x^2+8x-384 = 0 \\\\\longrightarrow x^2+4x-192 = 0 \\\\\longrightarrow x^2+16x-12x-192 = 0 \\\\\longrightarrow x(x+16)-12(x+16)=0 \\\\\longrightarrow (x+16)(x-12) =0 \\\\\longrightarrow \bf x= -16  \ , \  x = 12

Side of the square cannot be negative.

So, x = 12

Side of the first square = 12 cm

Side of the second square = 16 cm

Answered by Anonymous
114

  \underline{\underline{\green{\Large\sf Given:}}} \begin{cases} \mapsto \red{\sf sum \: of \: areas \: of \: two \: squars \: is \: 400 {cm}^{2} } \\  \\  \\ \sf  \mapsto \pink{ side \: of \: a \: square \: exceeds \: the \: side \: of \: another.}\end{cases}

\underline{\underline{\green{\Large\sf Find:}}} \begin{cases} \\  \\ \sf  \mapsto \pink{ sides \: of \: two \: squares.} \\   \\  \\ \end{cases}

\underline{\underline{\green{\Large\sf Solution:}}}

Let, \sf S_1 and \sf S_2 be two squares.

Let, the side of the square \sf S_2 be x cm

Then, side of the square \sf S_1 = (x + 4) cm

Now, we know that

 \sf \to Area\:of\:square= (side) \times (side)

So,

 \sf \leadsto Area\:of\:square \:  S_1= (x + 4) \times (x + 4)

 \sf \leadsto Area\:of\:square \:  S_1= {(x + 4)}^{2}

Now,

 \sf \leadsto Area\:of\:square \:  S_2= (x) \times (x)

 \sf \leadsto Area\:of\:square \:  S_2= {(x)}^{2}

It is given that, Area of both the squares is 400cm²

So,

➟ Area of square \sf S_1 + Area of square \sf S_2 = 400cm²

 \sf \implies \:  \:  \:  \:  \:  \:  {(x + 4)}^{2}  +  {x}^{2}  = 400

\sf using \: \pink{{(a + b)}^{2}  =  {a}^{2}  + 2ab +  {b}^{2}}

 \sf \implies \:  \:  \:  \:  \:  \:  ( {x}^{2} + 2(x)(4) +  {b}^{2}  ) +  {x}^{2}  = 400

 \sf \implies \:  \:  \:  \:  \:  \:  ( {x}^{2} + 8x+  {4}^{2}  ) +  {x}^{2}  = 400

 \sf \implies \:  \:  \:  \:  \:  \:   {x}^{2} + 8x+  16   +  {x}^{2}  = 400

 \sf \implies \:  \:  \:  \:  \:  \:   2{x}^{2} + 8x+ 16 - 400=0

 \sf \implies \:  \:  \:  \:  \:  \:   2{x}^{2} + 8x -  384=0

 \sf \implies \:  \:  \:  \:  \:  \:   2({x}^{2} + 4x -  492)=0

 \sf \implies \:  \:  \:  \:  \:  \:   {x}^{2} + 4x -  492= \dfrac{0}{2}

 \sf \implies \:  \:  \:  \:  \:  \:   {x}^{2} + 4x -  492= 0

⛗ Apply middle-split term

 \sf \implies \:  \:  \:  \:  \:  \:   {x}^{2} + 4x -  492= 0

 \sf \implies \:  \:  \:  \:  \:  \:   {x}^{2} + 16x  - 12x-  492= 0

 \sf \implies \:  \:  \:  \:  \:  \:   x(x+ 16)  - 12(x + 16)= 0

 \sf \implies \:  \:  \:  \:  \:  \:   (x - 12)(x + 16)= 0

\begin{gathered}\sf x - 12 = 0 \\  \sf x = 12\end{gathered}  \qquad \qquad\begin{gathered}\sf x  + 16 = 0 \\  \sf x = - 16\end{gathered}

  \footnotesize{\underline{\sf \:  ignoring \:  - 16 \: as \:length \: of \:  side \: will \: never \: be \:in \: negative}}

  \sf \therefore x = 12cm

Thus, the side of square \sf S_1 = x + 4 = 12 + 4 = 16cm

and the side of square \sf S_2 = x = 12cm

Similar questions