Math, asked by saryka, 2 months ago

Q46. If \alpha and \beta are the roots of the equation 375x² – 25x – 2 = 0, then \displaystyle{\lim_{n\to\infty}\sum_{r=1}^n\alpha^r+\lim_{n\to\infty}\sum_{r=1}^n\beta^r} is equal to:

Ⓐ 7/116
Ⓑ 29/348
Ⓒ 1/12
Ⓓ 21/346​

Answers

Answered by MrImpeccable
138

ANSWER:

Given:

  • \alpha and \beta are zeroes of 375x² – 25x – 2 = 0

To Find:

\displaystyle{\:\:\bullet\:\:\lim_{n\to\infty}\sum_{r=1}^n\alpha^r+\lim_{n\to\infty}\sum_{r=1}^n\beta^r}

Solution:

We are given that, \alpha and \beta are zeroes of 375x² – 25x – 2 = 0.

We can have,

\implies\text{Sum of zeroes}=\alpha+\beta=\dfrac{\text{-coefficient of x}}{\text{coefficient of x$^2$}}

So,

\implies\alpha+\beta=\dfrac{-(-25)}{375}=\dfrac{25}{375}

\implies\alpha+\beta=\dfrac{1}{15}- - - -(1)

And,

\implies\text{Product of zeroes}=\alpha\beta=\dfrac{\text{constant}}{\text{coefficient of x$^2$}}

\implies\alpha\beta=\dfrac{-2}{375}- - - -(2)

Now, we need to find value of,

\displaystyle{\longrightarrow\lim_{n\to\infty}\sum_{r=1}^n\alpha^r+\lim_{n\to\infty}\sum_{r=1}^n\beta^r}

We can re-write it as,

\displaystyle{\longrightarrow\sum_{r=1}^{\infty}\alpha^r+\sum_{r=1}^{\infty}\beta^r}

Now, we open the summations,

\displaystyle{\implies\bigg(\alpha^1+\alpha^2+\alpha^3+\dots+\alpha^{\infty}\bigg)+\bigg(\beta^1+\beta^2+\beta^3+\dots+\beta^{\infty}\bigg)}

We can see that, terms in each summation forms a GP, with \alpha and \beta as the common ratios respectively.

We know that,

\hookrightarrow\text{Sum of infinite terms of GP}=\dfrac{a}{1-r}

Here, a is first term and r is common ratio.

Applying this,

\displaystyle{\implies\bigg(\alpha^1+\alpha^2+\alpha^3+\dots+\alpha^{\infty}\bigg)+\bigg(\beta^1+\beta^2+\beta^3+\dots+\beta^{\infty}\bigg)}

\implies\bigg(\dfrac{\alpha}{1-\alpha}\bigg)+\bigg(\dfrac{\beta}{1-\beta}\bigg)

So,

\displaystyle\implies\dfrac{\alpha}{1-\alpha}+\dfrac{\beta}{1-\beta}

Taking LCM,

 \displaystyle \implies\dfrac{(\alpha)(1-\beta)+(\beta)(1-\alpha)}{(1-\alpha)(1-\beta)}

 \displaystyle \implies\dfrac{\alpha-\alpha\beta+\beta-\alpha\beta}{1-\alpha-\beta+\alpha\beta}

Regrouping,

 \displaystyle \implies\dfrac{(\alpha+\beta)-2(\alpha\beta)}{1-(\alpha+\beta)+(\alpha\beta)}

Substituting values from (1) & (2),

 \displaystyle \implies\dfrac{\left(\frac{1}{15}\right)-2\left(\frac{-2}{375}\right)}{1-\left(\frac{1}{15}\right)+\left(\frac{-2}{375}\right)}

 \displaystyle \implies\dfrac{\frac{1}{15}+\frac{4}{375}}{1-\frac{1}{15}-\frac{2}{375}}

Taking LCM,

 \displaystyle \implies\dfrac{\frac{25+4}{375}}{\frac{375-25-2}{375}}

 \displaystyle \implies\dfrac{\frac{29}{375}}{\frac{348}{375}}

On cancelling 375 in both numerator and denominator,

\implies\dfrac{29}{348}

On simplifying,

\implies\bf\dfrac{1}{12}

Therefore,

\displaystyle{\bf\implies\lim_{n\to\infty}\sum_{r=1}^n\alpha^r+\lim_{n\to\infty}\sum_{r=1}^n\beta^r\:\:\:=\:\:\:\dfrac{1}{12}}

Answered by manojchauhanma2
0

Answer:

see Image for answer

please follow

Attachments:
Similar questions