Math, asked by AryanPandey711, 17 hours ago

Q5. A sum of money put at 10 % per annum simple interest amounts to Rs 41600 in 3 years. what will it amount to in 2 years at the same rate? *​

Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Given that,

  • A sum of money put at 10 % per annum simple interest amounts to Rs 41600 in 3 years.

So, we have

  • Amount = Rs 41600

  • Time, n = 3 years

  • Rate of interest, r = 10 % per annum

Let assume that

  • Sum of money deposited be Rs P.

We know,

Amount received on a certain sum of money of Rs P invested at the rate of r % per annum for n years is given by

\boxed{ \rm{ \:Amount \:  =  \: P\bigg[1 + \dfrac{rn}{100} \bigg] \: }} \\

So, on substituting the values, we get

\rm \:  \:41600 \:  =  \: P\bigg[1 + \dfrac{10 \times 3}{100} \bigg] \: \\

\rm \:  \:41600 \:  =  \: P\bigg[1 + \dfrac{3}{10} \bigg] \: \\

\rm \:  \:41600 \:  =  \: P\bigg[\dfrac{10 + 3}{10} \bigg] \: \\

\rm \:  \:41600 \:  =  \: P\bigg[\dfrac{13}{10} \bigg] \: \\

\rm \: P = \dfrac{41600 \times 10}{13}  \\

\rm \: P = 3200 \times 10 \\

\bf\implies \:P \:  =  \: Rs \: 32000 \\

Now, we have to find what Rs 32000 amounts to in 2 years at the rate of 10 % per annum.

So, we have now

  • Principal, P = Rs 32000

  • Rate of interest, r = 10 % per annum

  • Time, n = 2 years

So, Amount received in 2 years is

\rm \: \:Amount \:  =  \: 32000\bigg[1 + \dfrac{10 \times 2}{100} \bigg] \: \\

\rm \: \:Amount \:  =  \: 32000\bigg[1 + \dfrac{2}{10} \bigg] \: \\

\rm \: \:Amount \:  =  \: 32000\bigg[1 + \dfrac{1}{5} \bigg] \: \\

\rm \: \:Amount \:  =  \: 32000\bigg[\dfrac{5 + 1}{5} \bigg] \: \\

\rm \: \:Amount \:  =  \: 32000\bigg[\dfrac{6}{5} \bigg] \: \\

\rm \: \:Amount \:  =  \: 6400 \times 6 \: \\

\bf\implies \:Amount \:  =  \: Rs \: 38400 \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: Formulae}}}} \\ \\ \bigstar \: \bf{P =  \dfrac{SI \times 100}{r \times n} }\\ \\ \bigstar \: \bf{r =  \dfrac{SI \times 100}{P \times n} }\\ \\ \bigstar \: \bf{n =  \dfrac{SI \times 100}{P \times r} }\\ \\ \bigstar \: \bf{Amount = P\bigg(\dfrac{100 + rn}{100}  \bigg) }\: \end{array} }}\end{gathered}\end{gathered}\end{gathered}

Similar questions