Math, asked by anshu1815, 6 months ago

..
*Q5, एक घन की लम्बाई ,चौड़ाई और ऊंचाई
होती है | The cube has its length,breadth
and height is .......
1977 (Different)
समान (Equal)
दो गुना ( two times)
तीन गुना (3 times)​

Answers

Answered by aruanu1815
2

Answer:

AnswEr:

★ Equal ★

Cube has equal length, breadth and height.\\\\

More to know:

Cube: A solid body having six equal square sides.\\\\

Diagram:

\setlength{\unitlength}{4mm}\begin{picture}(10,6)\thicklines\put(0,1){\line(0,1){10}}\put(0,1){\line(1,0){10}}\put(10,1){\line(0,1){10}}\put(0,11){\line(1,0){10}}\put(0,11){\line(1,1){5}}\put(10,11){\line(1,1){5}}\put(10,1){\line(1,1){5}}\put(0,1){\line(1,1){5}}\put(5,6){\line(1,0){10}}\put(5,6){\line(0,1){10}}\put(5,16){\line(1,0){10}}\put(15,6){\line(0,1){10}}\put(4.6,-0.5){\bf\large a}\put(13.5,3){\bf\large a}\put(-4,5.8){\bf\large a}\end{picture}

here,

a is the side of cube. \\\\

Some formula related to cube:

Total surface area of cube = 6a²

Curved surface area of cube = 4a²

Volume of cube = a³ \\\\

⠀━━━━━━━━━━━━━━━━━━━━━

A body having unequal length, breadth and height is know as Cuboid. \\\\

Diagram:

\setlength{\unitlength}{0.74 cm}\begin{picture}\thicklines\put(3.5,6.1){\sf b}\put(7.7,6.3){\sf l}\put(11.3,7.45){\sf h}\put(6,6){\line(1,0){5}}\put(6,9){\line(1,0){5}}\put(11,9){\line(0,-1){3}}\put(6,6){\line(0,1){3}}\put(4,7.3){\line(1,0){5}}\put(4,10.3){\line(1,0){5}}\put(9,10.3){\line(0,-1){3}}\put(4,7.3){\line(0,1){3}}\put(6,6){\line(-3,2){2}}\put(6,9){\line(-3,2){2}}\put(11,9){\line(-3,2){2}}\put(11,6){\line(-3,2){2}}\end{picture}

here,

l = length of Cuboid

b = breadth of Cuboid

h = height of Cuboid \\\\

Some formula related to cuboid: \\\\

Total surface area of Cuboid = 2(lb + bh + hl)

Curved surface area of Cuboid = 2(l + b)h

Volume of Cuboid = l × b × h

Answered by firdous41
4

Step-by-step explanation:

| = length of Cuboid

b = breadth of Cuboid

h = height of Cuboid

Some formula related to cuboid:

Total surface area of Cuboid = 2(lb + bh + hl)

Curved surface area of Cuboid = 2(1 + b)h

Volume of Cuboid = I x b xh

it

Similar questions