Math, asked by tenzinchoden, 10 months ago

Q5.If cot Ø + cos Ø = x and cot Ø - cos Ø =y then x²-y² = ​

Answers

Answered by Miraal2020
0

Answer:4cospcotp

Step-by-step explanation:let phi=p

Given, x=cotp+cosp

Y=cotp-cosp

X^2=cot^2p+ cos^2p+ 2cospcotp

Y^.2 =cos^2p+ cot^2p+ 2cospcotp

X^2-Y^2. =4cospcotp

Answered by Anonymous
2

\sf\red{\underline{\underline{Answer:}}}

\sf{The \ value \ of \ x^{2}-y^{2} \ is \ 4cot\theta.cos\theta}

\sf\orange{Given:}

\sf{\implies{cot\theta+cos\theta=x}}

\sf{\implies{cot\theta-cos\theta=y}}

\sf\pink{To \ find:}

\sf{x^{2}-y^{2}}

\sf\green{\underline{\underline{Solution:}}}

\sf{According \ to \ the \ identity}

\sf{a^{2}-b^{2}=(a+b)(a-b)}

\sf{x^{2}-y^{2}=(x+y)(x-y)}

\sf{x^{2}-y^{2}}

\sf{=[(cot\theta+cos\theta)+(cot\theta-cos\theta)][(cot\theta+cos\theta)-(cot\theta-cos\theta)]}

\sf{x^{2}-y^{2}=(2cot\theta)(2cos\theta)}

\sf{\therefore{x^{2}-y^{2}=4cot\theta.cos\theta}}

\sf\purple{\tt{\therefore{The \ value \ of \ x^{2}-y^{2} \ is \ 4cot\theta.cos\theta}}}

Similar questions