Q5. If the equation (1 + m²)x² + 2mcx + (c? - a?) = 0 has equal roots,
prove that c = a’(1 + m?)
Answers
Given Equation -
( 1 + m² ) x² + 2mcx + ( c² - a² ) = 0
Now , this has two equal roots .
Let the roots be â and â respectively .
As the roots Are equal, so Product of Roots :
=> â²
But ,
Product of Roots = ( c² - a² )/ ( 1 + m² )
So,
â² = ( c² - a² ) / ( 1 + m² )
Sum of roots = -b/a
=> 2â = -2mc / ( 1 + m² )
=> â = - mc / ( 1 + m² )
So , we have got the following equations :
=> â = - mc / ( 1 + m² ) .... ¹
=> â² = ( c² - a² ) / ( 1 + m² ) ...... ²
Squaring the first equation ;
[ -mc / ( 1 + m² ) ] ² = ( c² - a² ) / ( 1 + m² )
m²c² / ( 1 + m² )² = ( c² - a ² ) / ( 1 + m² )
=> m²c² = ( 1 + m² )( c² - a² )
=> m²c² = c² - a² + m²c² - m²a²
=> m²a² = c² - a²
=> m²a² + a² = c²
=> c² = a² ( 1 + m² )
=> c = a ( 1 + m² )½ .
Hence Proved
___________________________________________