Math, asked by 29091995man, 10 months ago

Q5.Solve (sin x + Isinx|)dx​

Answers

Answered by MonsieurBrainly
39

Solution:

\dfrac{d}{dx}(sinx + |sinx|) \\\\ = \dfrac{d}{dx}(sinx) + \dfrac{d}{dx}(|sinx|)\\\\= cosx + \dfrac{sinx}{|sinx|} \times \dfrac{d}{dx}(sinx)\\\\= cosx + \dfrac{sinx}{|sinx|} \times cosx \\\\= \dfrac{sinx.cosx}{|sinx|} +cosx \\\\

Formulae Used:

\dfrac{d}{dx}(x + y) = \dfrac{d}{dx}(x) \times \dfrac{d}{dx}(y)\\\\\dfrac{d}{dx}(sinx) = cosx\\\\\dfrac{d}{dx}(|x|) = \dfrac{x}{|x|}\\\\


Steph0303: Perfect :)
Anonymous: Awesome answer !
Answered by Anonymous
45

Answer:

\rightarrow\sf\boxed{{{\frac{sin.cosx}{|sinx|}+cosx}}}

Step-by-step explanation:

\rightarrow\sf\frac{d}{dx} (sinx + | \: sinx|) \\ \rightarrow\sf \frac{dx}{dx} (sinx) +  \frac{d}{dx  } (|sinx|) \\ \rightarrow\sf cosx +  \frac{sinx}{|sinx|}  × \frac{d}{dx} (sinx) \\ \rightarrow\sf cosx + \frac{sinx}{|sinx|}  ×  cosx  \\ \rightarrow\sf\boxed{{{\frac{sin.cosx}{|sinx|}+cosx}}}

✨ Hope it helped! ✨

Similar questions