Math, asked by aswalmahender75, 27 days ago

Q5.The base angle of an isosceles triangle is 10 more than twice the vertex angle. Find the valueof equalangles.​

Attachments:

Answers

Answered by suhail2070
1

Answer:

each \: base \: angle =  \frac{600}{7}  \:  \:  \: degrees.

Step-by-step explanation:

let \: the \: base \: angle \: each = x \\ \\ and \: the \: vert ex \: angle = y \\  \\  \\ then \:  \:  \:  \: x = 10y \\  \\ x + x + y = 180 \:  \: by \: angle \: sum \: property \: f \: a \: triangle \\  \\ 2x + y = 180 \\  \\ solving \: these \:  \\  \\ 2(10y) + y = 180 \\  \\ 21y = 180 \\  \\ y =  \frac{180}{21}  =  \frac{60}{7 \: }  \: degrees. \\  \\ x = 10( \frac{60}{7} ) =  \frac{600}{7} .

Similar questions