Math, asked by preetrajsingh401, 24 days ago

Q5: The total CP of 2 items is Rs.1200. If the CP of the first one is 1.5 times the CP of the other and the 2nd item is sold for Rs.520/- find the profit or loss % in selling the 2nd one?
a. 4 % profit b. 8.33 % profit c. 10 % profit
d. 12.5% profit...​

Answers

Answered by thelostbookmark9
22

Answer:

b. 8.33% profit

Step-by-step explanation:

Attachments:
Answered by mathdude500
20

\large\underline{\sf{Solution-}}

Given that,

The total CP of 2 items is Rs.1200 and the CP of the first one is 1.5 times the CP of the other.

Let assume that,

Cost Price of second item be Rs x

So, cost price of first item is Rs 1.5 x

According to statement, the total cost price of 2 items is Rs 1200.

\rm \: x + 1.5x = 1200 \\

\rm \: 2.5x = 1200 \\

\rm \: x = \dfrac{1200}{2.5}

\rm \: x = \dfrac{1200 \times 10}{25}

\rm\implies \:x = 48 \\

So, we have

Cost Price of second item = Rs 480.

Now, Further given that,

Selling Price of second item = Rs 520

Since, Selling Price > Cost Price

So, it means, there is Profit in this transaction.

We know,

\boxed{\sf{  \:\rm \: Profit\% =  \frac{Selling \: Price - Cost \: Price}{Cost \: Price} \times 100\% \:  \: }} \\

So, on substituting the values, we get

\rm \: Profit\% = \dfrac{520 - 480}{480} \times 100\% \\

\rm \: Profit\% = \dfrac{40}{480} \times 100\% \\

\rm \: Profit\% = \dfrac{1}{12} \times 100\% \\

\rm \: Profit\% = \dfrac{1}{3} \times 25\% \\

\rm\implies \:Profit \: \%  \: =  \: 8.33\% \\

So, option (b) is correct.

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: Formulae}}}} \\ \\ \bigstar \: \bf{Gain = \sf S.P. \: – \: C.P.} \\ \\ \bigstar \:\bf{Loss = \sf C.P. \: – \: S.P.} \\ \\ \bigstar \: \bf{Gain \: \% = \sf \Bigg( \dfrac{Gain}{C.P.} \times 100 \Bigg)\%} \\ \\ \bigstar \: \bf{Loss \: \% = \sf \Bigg( \dfrac{Loss}{C.P.} \times 100 \Bigg )\%} \\ \\ \\ \bigstar \: \bf{S.P. = \sf\dfrac{(100+Gain\%) or(100-Loss\%)}{100} \times C.P.} \\ \: \end{array} }}\end{gathered}\end{gathered}\end{gathered}

Similar questions