Math, asked by anuo25, 1 year ago

Q52. Sin45° + Cos30°​

Answers

Answered by hasini69
0

Step-by-step explanation:

 \sin(45 \:)  \:  +  \cos(30  ) \\ 1 \div  \sqrt{2}  +  \sqrt{3}  \div 2 \\  = 1.00515497

Answered by EthicalElite
19

\huge\tt{Answer:-}

 \sf sin45° + cos30°

⠀ ⠀⠀ ⠀ ⠀⠀ ⠀

 \sf Now, \: we \:  have \: value \: of \: sin45° = \dfrac{1}{\sqrt{2}}

 \sf and \: cos30° = \dfrac{\sqrt{3}}{2}

 \sf \implies sin45° + cos30° = \dfrac{1}{\sqrt{2}} + \dfrac{\sqrt{3}}{2}

 \sf = \dfrac{1}{\sqrt{2}} + \dfrac{\sqrt{3}}{2}

 \sf = \dfrac{1×2}{\sqrt{2}×2} + \dfrac{\sqrt{3}×\sqrt{2}}{2×\sqrt{2}}

 \sf = \dfrac{2 + \sqrt{6}}{2\sqrt{2}}

 \sf Now, \: by \: rationalisation

 \sf = \dfrac{2 + \sqrt{6}}{2\sqrt{2}} ×  \dfrac{2\sqrt{2}}{2\sqrt{2}}

 \sf = \dfrac{(2 + \sqrt{6})(2\sqrt{2})}{(2\sqrt{2})(2\sqrt{2})}

 \sf = \dfrac{(2 + \sqrt{6})(2\sqrt{2})}{(2\sqrt{2})²}

 \sf = \dfrac{4\sqrt{2} + 2\sqrt{12}}{2 × 2×\sqrt{2}×\sqrt{2}}

 \sf = \dfrac{4\sqrt{2} + 2\sqrt{12}}{4 × 2}

 \sf = \dfrac{4\sqrt{2} + 2\sqrt{12}}{8}

 \sf = \dfrac{2(2\sqrt{2} + \sqrt{12})}{8}

 \sf = \dfrac{\cancel{2}^{1}(2\sqrt{2} + \sqrt{12})}{\cancel{8}_{4}}

 \sf = \dfrac{2\sqrt{2} + \sqrt{12}}{4}

 \sf = \dfrac{2\sqrt{2} + \sqrt{2×2×3}}{4}

 \sf = \dfrac{2\sqrt{2} + 2\sqrt{3}}{4}

 \sf = \dfrac{2(\sqrt{2} + \sqrt{3})}{4}

 \sf = \dfrac{\cancel{2}^{1}(\sqrt{2} + \sqrt{3})}{\cancel{4}_{2}}

 \sf = \dfrac{\sqrt{2} + \sqrt{3}}{2}

⠀ ⠀⠀ ⠀ ⠀⠀ ⠀

 \sf \color{fuchsia} Answer = \dfrac{\sqrt{2} + \sqrt{3}}{2}

⠀ ⠀⠀ ⠀ ⠀

⠀ ⠀

\huge\tt{Know \: More:-}

\begin{gathered}\boxed{\boxed{\begin{array}{ |c |c|c|c|c|c|} \bf\angle A & \bf 0° & \bf 30° & \bf 45° & \bf 60° & \bf 90°  \\ \\ \rm sin A & 0 & \dfrac{1}{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{ \sqrt{3} }{2} &1 \\ \\ \rm cos \: A & 1 & \dfrac{ \sqrt{3} }{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{1}{2} &0 \\ \\ \rm tan A & 0 & \dfrac{1}{ \sqrt{3} }& 1 & \sqrt{3} & \rm Not \: Defined \\ \\ \rm cosec A & \rm Not \: Defined & 2& \sqrt{2} & \dfrac{2}{ \sqrt{3} } &1 \\ \\ \rm sec A & 1 & \dfrac{2}{ \sqrt{3} }& \sqrt{2} & 2 & \rm Not \: De fined \\ \\ \rm cot A & \rm Not \: Defined & \sqrt{3} & 1 & \dfrac{1}{ \sqrt{3} } & 0 \end{array}}}\end{gathered}

Similar questions