Q56. If
(4 + 3i)(1 + 4i) = x + iy. Then (x,y) =
(A) (-8,-19)
(B) (-8,19)
(C) (8,-19)
(D) (8,19
Answers
Answer :
(C) (8 , -19)
Solution :
- Given : (4 + 3i)(1 + 4i) = x + iy
- To find : (x , y) = ?
We have ;
=> (4 + 3i)(1 + 4i) = x + iy
=> 4•1 + 4•4i + 3i•1 + 3i•4i = x + iy
=> 4 + 16i + 3i + 12i² = x + iy
=> 4 + 19i + 12•(-1) = x + iy
=> 4 + 19i - 12 = x + iy
=> -8 + 19i = x + yi
Now ,
Comparing both sides , we get ;
x = -8
y = 19
Hence ,
(x , y) = (-8 , 19)
⛥
This is the first time I am dealing with . So I am confirm that this question will be really memorable for me. Thanks a lot for asking this question. :)
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
If (4 + 3i)(1 + 4i) = x + iy. Then (x,y) =
(A) (-8,-19)
(B) (-8,19)
(C) (8,-19)
(D) (8,19)
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
√-1 is called iota. It is shortened as .
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
(4 + 3i)(1 + 4i) = x + iy
➫ 4(1 + 4i) + 3i(1 + 4i) = x + iy
➫ 4 + 16i + 3i - 12 = x + iy
➫ -8 + 19i = x + iy
Now comparing both sides we get,
★ -8 = x
→ x = - 8
★ 19i = iy
→ 19 = y
→ y = 19
So, (x , y) = (-8 , 19)
So, is correct.
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
is correct.
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬