Accountancy, asked by arpitaupadhyayappi, 5 months ago

Q6- A and B are partners in affirm sharing profit & loss in the Ratio of 2:1.They
decided to share future profile equally. Determine the scarifying & gaining ratio.​

Answers

Answered by Berseria
8

Given :

  • Old ratio of Partners A & B = 2 : 1

  • New Ratio of Partners A & B = 1 : 1

To Find :

  • Sacrificing Ratio

  • Gaining Ratio

Solution :

{\boxed{\frak{\bullet \: sacrificing \:  ratio \:  = old \: ratio - new \: ratio}}}

{\boxed{\frak{ \bullet \: gaining \: ratio = new \: ratio - old \: ratio}}}

Sacrificing Ratio Of A :

 \:  \to\sf \:  \frac{2}{3}  -  \frac{1}{2} \\  \\ \to \sf  \frac{2}{3} -  \frac{1}{2}  \:   ( \: do \: cross \: multiply \: ) \\  \\ \to \sf \frac{4 - 3}{6}  \\  \\ \to \bf  \frac{1}{6}

Sacrificing Ratio of B :

 \:  \:  \to\sf \:  \frac{1}{3}  -  \frac{1}{2}  \\  \\ \to \sf  \frac{1 \times 2 - 3 \times 1}{3 \times 2}  \\  \\ \to\sf \:  \frac{2 - 3}{6}  \\  \\ \to \bf \:  \frac{ - 1}{6}  =  \frac{1}{6}

Sacrificing Ratio Of Partners : 1 : 1

Gaining Ratio Of A :

 \:  \:  \: \to\sf \:   \frac{1}{2}  -  \frac{2}{3}  \\  \\ \to \sf  \frac{1 \times 3 - 2 \times 2}{2 \times 3}  \\  \\ \sf \to \:  \frac{3 - 4}{6}  \\  \\ \bf \to \: \frac{1}{6}

Gaining Ratio Of B :

\sf \to \:  \frac{1}{2}  -  \frac{1}{3}  \\  \\ \to \sf \:  \frac{1 \times 3 - 2 \times 1}{2 \times 3}  \\  \\ \sf \to \:  \frac{3 -2 }{6}  \\  \\ \sf \to  \bf \frac{1}{6}

Gaining Ratio Of Partners : 1 : 1

\therefore \sf gaining \: ratio \: and \: sacrificing \: ratio \: of \: partners \: are \: same \:  (1 : 1)

Answered by simransinghrawat12
0

A's sacrificing ratio is 1/6 and B's gaining ratio is 1/6

Given :

Old profit sharing ratio of A & B = 2 : 1

New profit sharing ratio of A & B = 1 : 1

To Find :

Sacrificing Ratio and Gaining Ratio

Solution :

Sacrificing ratio = old ratio - new ratio

Gaining ratio = new ratio - old ratio

Thus,

Sacrificing Ratio Of A =  \frac{2}{3} - \frac{1}{2}

                                    =  \frac{4-3}{6}

                                    =  \frac{1}{6}

Sacrificing Ratio of B = \frac{1}{3} - \frac{1}{2}

                                   =  \frac{2-3}{6}

                                   = -\frac{1}{6}

As we can see B's sacrificing ratio is a negative number because he is not sacrificing anything but actually gaining.

Gaining Ratio Of A = \frac{1}{2} - \frac{2}{3}

                               = \frac{3-4}{6}

                               = \frac{-1}{6}

Here, A's gaining ratio is a negative number because he is not gaining anything but only sacrificing.

Gaining Ratio Of B = \frac{1}{2} - \frac{1}{3}

                               = \frac{3-2}{6}

                               = \frac{1}{6}

Thus A's sacrificing ratio is 1/6 and B's gaining ratio is 1/6

Similar questions